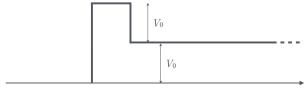
Corso di laurea in Fisica I Parziale di Istituzioni di Fisica Teorica 10 Novembre 2025


studente/ssa: matricola:

- 1) Gli stati $|a\rangle$ e $\alpha|a\rangle$ rappresentano lo stesso stato fisico così come gli stati $|b\rangle$ e $\beta|b\rangle$.
 - Affinchè le precedenti affermazioni risultino vere e tutti gli stati siano normalizzati come devo scegliere α e β ?
 - In quale caso i due stati $|\psi\rangle = \alpha |a\rangle + \beta |b\rangle$ e $|\phi\rangle = |a\rangle + |b\rangle$ rappresentano lo stesso stato?
- 2) Una particella libera in una dimensione si trova in uno stato per cui la densità di ampiezza probabilità negli impulsi è

$$\Phi(p) = \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-(p - p_0)^2 / 2\sigma^2)\right)^{1/2}$$

con $p_0 > 0$.

- Quale è il valor medio di una misura di p su tale stato?
- Quale è il valor medio di una misura di x su tale stato?
- Come evolve il valor medio $\langle x(t) \rangle$ nel tempo?
- 3) Su di uno stato $|\psi\rangle$ la misura di una quantità A dà sempre lo stesso valore a. Sullo stesso stato invece la misura della quantità B, che è compatibile con A, dà il valore b_1 o in valore b_2 in maniera equiprobabile.
 - Lo stato in esame è autostato di A?
 - Lo stato in esame è autostato di B?
 - Come si può esprimere $|\psi\rangle$?
- 4) Un oscillatore armonico di frequenza propria ω è inizialmente posto in uno stato in cui una misura di energia fornisce i soli due valori $\hbar\omega/2$ ed $3\hbar\omega/2$ con probabilità eguale.
 - Determinare tutti gli stati compatibili con le informazioni date.
 - Determinarne l'evoluzione temporale.
 - Determinare l'evoluzione temporale di $\langle x(t) \rangle$ e $\langle p(t) \rangle$ su questi stati.
- 5) Un flusso unidimensionale di particelle di energia E>0 fissata incide sul seguente gradino di potenziale

- In quali casi posso rilevare un flusso di particelle nella parte destra del piano?