Corso di laurea in Fisica Primo esonero di Istituzioni di Fisica Teorica L'Aquila 29 Novembre 2010

studente/ssa: matricola:

1) Due grandezze fisiche A e B sono rappresentate dalle seguenti matrici:

$$A=\left(\begin{array}{cc}a_1&0\\0&a_2\end{array}\right)\,B=\left(\begin{array}{cc}0&b_1+ib_2\\b_1-ib_2&0\end{array}\right)\,\mathrm{con}\ a_1,a_2,b_1,b_2\ \mathrm{valori\ reali}.$$

- Quale è la base nella quale esse ammettono questa rappresentazione?
- Le due grandezze sono compatibili?
- Sapete dare un limite inferiore (calcolandolo) al prodotto di indeterminazione $<\Delta A^2><\Delta B^2>$ su un generico stato?
- 2) Una funzione d'onda unidimensionale è data da

$$\psi(x) = \frac{1}{\sqrt{L}} - \frac{L}{2} \le x \le \frac{L}{2}$$

$$\psi(x) = 0$$
 altrimenti

- Determinare la densità di probabilità di trovare l'impulso p in una misura.
- Calcolare .
- 3) Una particella di massa m vincolata su di un segmento lungo L si trova in uno stato per cui una misura di energia fornisce unicamente i 2 valori più bassi E_1 ed E_2 con probabilità P_1 e P_2 rispettivamente.
 - Quali i valori dell'energia?
 - Quale è lo stato più generale che soddisfa i requisiti sopra?
 - Come variano le probabilità P_1 e P_2 nel tempo?
- 4) Esprimere gli operatori x^2 e p^2 in termini degli operatori a ed a^{\dagger} dell'oscillatore armonico.
 - Calcolare i due stati

$$x^2|n>$$

$$p^2|n>$$

- Calcolare

$$<3|p^{2n+1}|3>$$