Corso di laurea in Fisica II Parziale di Istituzioni di Fisica Teorica L'Aquila 21 Dicembre 2012

studente/ssa: matricola:

1) Un rotatore quantistico tridimensionale evolve soggetto al seguente Hamiltoniano

$$H = \frac{L_x^2 + L_y^2}{2I_\perp} + \frac{L_z^2}{2I_\parallel}$$

- H commuta con L^2 ?
- determinare autostati ed autovalori di ${\cal H}$ $suggerimento \ {\rm far \ comparire} \ L^2 \ {\rm nell'espressione \ dell'Hamiltoniano}$
- 2) Due particelle identiche (massa m) sono confinate su di un segmento di lunghezza L.
 - Determinare lo stato fondamentale ed il primo(i) eccitato(i) nel caso di
 - i) bosoni di spin zero
 - ii) fermioni di spin 1/2.

Aggiungendo una interazione del tipo:

i) bosoni di spin 0

$$V(x_1 - x_2) = \lambda \delta(x_1 - x_2)$$

ii) fermioni di spin 1/2

$$V(x_1 - x_2) = \lambda \mathbf{s_1} \cdot \mathbf{s_2} \delta(x_1 - x_2)$$

- (Nel caso ii)) l'Hamiltoniano complessivo commuta con lo spin totale s^2 e con la sua componente z?
- determinare la correzione al primo ordine in λ allo stato fondamentale
- 3) Un atomo di idrogeno è posto in un potenziale

$$V = -q(\vec{L} + 2\vec{s}) \cdot \vec{B}$$

dove \vec{B} è un campo magnetico esterno che assumiamo diretto lungo l'asse z.

- L'Hamiltoniano di perturbazione commuta con l'Hamitoniano dell'atomo di Idrogeno imperturbato?
- Quale degenerazione è rimossa dalla perturbazione?
- 4) Una particella di massa m è sottoposta ad un potenziale armonico isotropo bidimensionale di frequenza propria ω . Tale potenziale è perturbato dal termine

$$V(x,y) = -\lambda x y$$

con λ costante positiva.

- Determinare la correzione al primo ordine allo stato fondamentale ed al primo eccitato
- Quale degenerazione è rotta dalla perturbazione?
- 5) Lo stato di una particella libera di spin 1/2 è tale che una misura di energia può fornisce il valore $E=|p|^2/2m$ con certezza.
 - Scrivere lo stato nella sua generalità.

Su questo stato inoltre la probabilità congiunta di ottenere in una misura di impulso \vec{p} e di $s_z=-\frac{\hbar}{2}$ è nulla. Analogamente è nulla la probabilità congiunta di ottenere in una misura il valore di impulso pari a $-\vec{p}$ ed il valore dello spin $s_z=\frac{\hbar}{2}$.

- Scrivere lo stato che soddisfa queste ultime due condizioni.