Corso di laurea in Fisica III Parziale di Istituzioni di Fisica Teorica L'Aquila 24 Gennaio 2014

studente/ssa: matricola:

- 1) Elencare le variabili termodinamiche proprie, il potenziale termodinamico e la sua relazione col peso statistico nei casi
 - i) insieme statistico microcanonico
 - ii) insieme statistico canonico
 - iii) insieme statistico grancanonico

mettere in relazione i tre potenziali termodinamici.

- 2) Un insieme di N sistemi a due livelli distringuibili ed indipendenti è termalizzato alla temperatura T. Il numero medio dei sistemi che si trova nello stato a energia più elevata $E_2 = 2E_1$ è la metà di quelli che si trovano nello stato fondamentale (E_1) e che detti stati sono non-degeneri. Sapendo inoltre che l'energia E_1 espressa in ${}^{o}K$ è $150{}^{o}K$
 - Determinare la temperatura del sistema
 - determinare l'energia interna specifica del sistema U/N
- 3) In un gas perfetto classico di particelle di massa m che si trova a temperatura T valutare
 - il valor medio $\langle \mathbf{p} \cdot \hat{\mathbf{n}} \rangle$ dove $\hat{\mathbf{n}}$ è una generica direzione.
 - il valor medio $\langle (\mathbf{p} \cdot \hat{\mathbf{n}})^2 \rangle$
 - se il gas è posto in un campo gravitazionale i risultati sopra ottenuti cambiano?
- 4) In un gas di Fermi di particelle di massa m contenuto in un volume V a temperatura nulla
 - dare l'espressione del numero medio di particelle
 - dare l'espressione dell'energia interna U
 - valutare il rapporto U/N in funzione dell'energia di Fermi
 - valutare il rapporto PV/U
- 5) Un sistema di N oscillatori armonici unidimensionali distinguibili ed indipendenti di frequenza propria ω è termalizzato a temperatura T.
 - Quale sarebbe l'energia interna se gli oscillatori fossero considerati classici?
 - Se $\hbar\omega/k_BT=10$ quale è il rapporto $\frac{U}{Nk_BT}$, quale sarebbe tale rapporto se gli oscillatori fossero classici? Discutere il risultato ottenuto.
- 6) Un cilindro di sezione S ed altezza h si muove, nello spazio, nella direzione del suo asse di moto accelerato uniforme con accelerazione in modulo pari ad a. Esso contiene una gas perfetto classico di particelle di massa m a temperatura T.
 - Determinare la distribuzione delle particelle nel volume del cilindro.