Corso di laurea in Fisica III Parziale di Istituzioni di Fisica Teorica L'Aquila 23 Gennaio 2018

studente/ssa: matricola:

- 1) Considerare delle particelle classiche di massa m all'equilibrio termico alla temperatura T e contenute in un volume V che si trova in quiete rispetto al sistema del laboratorio.
 - Calcolare il valor medio della velocità lungo una direzione arbitraria
 - Calcolare le sue fluttuazioni

Supporre poi che il contenitore del gas si muova con una velocità \vec{v}_0

- Il valor medio della velocità (nel sistema del laboratorio) cambia rispetto al caso precedente?
- Le fluttuazioni (nel sistema del laboratorio) cambiano?
- 2) Considerare i tre ensembles
 - Microcanonico
 - Canonico
 - Gran canonico
 - Definire i potenziali termodinamici specificando le loro variabili naturali.
 - Definire le funzioni di partizione dandone un esempio nel caso di particelle classiche indistinguibili.
- 3) Un gas perfetto che si può considerare classico si trova alla temperatura T esso è sottoposto ad un campo gravitazionale (in vicinanza della superficie terrestre) diretto lungo l'asse z.
 - Scrivere, a parte normalizzazione la distribuzione degli impulsi e delle posizioni per una particella. Da quante variabili dipende?
 - Scrivere, a parte normalizzazione la distribuzione delle sole coordinate per una particella. Da quante variabili dipende? Come si ottiene dalla precedente?
- 4) N sistemi quantistici distinguibili sono sistemi a due livelli non degeneri di energie E_1, E_2 con $E_1 < E_2$. Essi sono termalizzati alla temperatura T.
 - Calcolare il rapporto fra le popolazioni dei livelli 1 e 2.
 - Calcolare l'energia interna (energia media) nei due limit $T \to 0$ e $T \to \infty$ e discutere il risultato.
- 5) Considerare un gas perfetto quantistico di particelle identiche. Se per ongni particella la soluzione della equazione di Scrödinger indipedente dal tempo ammette come autovalori della energia i valori ϵ_{α} .
 - Dare il valor medio delle occupazioni dei livelli α -simi in funzione della temperatura ($\beta = 1/k_BT$) e del potenziale chimico (μ) nel caso bosonico e fermionico.
 - Discutare il risultato nel limite $z \to 0$ dove $z = e^{\beta \mu}$.