
Exercise #1

due date: October 21 2025

a) Consider the following thermodynamic cycle for a perfect gas:

- Draw the cycle in the T-S plane.
- Calculate the total work exerted by the system (W).
- Calculate the total heat exchanged by the system (Q).
- Calculate the efficiency $\hat W}/{Q_{abs}}\$ where $Q_{abs}\$ is the absorbed heat.
- b) Consider only one one-dimensional classical harmonic oscillator
 - \bullet write the Hamilton equation and plot a typical trajectory in the phase space

• calculate the time average for a generic initial state of the position x(t). Does it tends to zero?

now consider an ensemble made of replicas of the previous case i.e. one-dimensional classical harmonic oscillator with same \$\omega\$ and mass

- write the Liouville's evolution for and ensemble of such systems using momenta and position as variables
- consider an *isoenergetic* ensemble of oscillators (all osc. have energy=E). This ensemble starts with random phases between ϕ and ϕ and ϕ Delta. In such conditions evaluate ϕ . Does it tends to a constant value?
- c) Consider a classical perfect gas and calculate the entropy in the canonical ensemble. Compare the result with that given, in the microcanonical ensemble, by the Sackur-Tetrode formula and show the ensemble equivalence in the thermodynamic limit.
- d) Consider the following Hamiltonian for $N\$ independent spin $\simeq \$

```
H=-gB\sum i \sin i
```

Comment the result.

Where \$B\$ is the external magnetic field along \$z\$, \$g\$ a coupling constant and \$\sigma_i\$ the Pauli matrix \$\sigma_z\$ at a given site \$i\$. Spin operators at different sites commute.

Perform the calculation in the microcanonical ensemble at fixed total **energy**, calculate the entropy. Plot the dimensionless entropy per spin (\$S/k_B N\$) as a function of a suitably defined dimensionless energy.

Perform the calculation of the entropy in the canonical ensemble at fixed total **temperature**.

Compare the results of the previous two points by expressing the canonical entropy as a function of the internal energy.

Last updated 2025-10-07 15:59:03 CEST