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geometrical interpretation is as follows. If we follow the motion of a representa-
tive point in I' space, we find that the density of representative points in its
neighborhood is constant. Hence the distribution of representative points moves
in T space like an incompressible fluid.

The observed value of a dynamical quantity O of the system, which is
generally a function of the coordinates and conjugate momenta, is supposed to be
its averaged value taken over a suitably chosen ensemble:

[a**pa**q0(p,q)o(p.q,1)
(0 = (3.42)

[ @ pd**q0(p,q.1)

This is called the ensemble average of O. Its time dependence comes from that of
p, which is governed by Liouville’s theorem. In principle, then, this tells us how a
quantity approaches equilibrium—the central question of kinetic theory. In the
next section we shall derive the Boltzmann transport equation using this ap-
proach.

Under certain conditions one can prove an ergodic theorem, which says that
if one waits a sufficiently long time, the locus of the representative point of a
system will cover the entire accessible phase space. More precisely, it says that
the representative point comes arbitrarily close to any point in the accessible
phase space. This would indicate that the ensemble corresponding to thermody-
namic equilibrium is one for which p is constant over the accessible phase space.
This 1s actually what we shall assume. *

3.5 THE BBGKY HIERARCHY

One can define correlation functions f,, which give the" probability of finding s
particles having specified positions and momenta, in the systems forming an
ensemble. The function f; is the familiar distribution function. The exact
equations of motion for f, in classical mechanics can be written down. They
show that to find f; we need to know f,, which in turns depends on a knowledge
of f;, and so on till we come the full N-body correlation function fy. This system
of equations is known as the BBGKY ' hierarchy. We shall derive it and show
how the chain of equations can be truncated to yield the Boltzmann transport
equation. The “derivation” will not be any more rigorous than the one already
given, but it will give new insight into the nature of the approximations.
Consider an ensemble of systems, each being a gas of N molecules enclosed
in volume V, with Hamiltonian 5. Instead of the general notation { p,, g;}

*See the remarks about the relevance of the ergodic theorem in Section 4.5.

"BBGKY stands for Bogoliubov-Born-Green-Kirkwood-Yvon. For a detailed discussion and
references see N. N. Bogoliubov in Studies in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck,
Eds., Vol. I (North-Holland, Amsterdam, 1962).
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(i =1,...,3N), we shall denote the coordinates by the Cartesian vectors {p,,r;}

(i=1,..., N), for which we use the abbreviation

z; = (p;,1;), fdzi= fd3pid3ri (3.43)
The density function characterizing the ensemble is denoted by p(1,..., N, 1),
and assumed to be symmetric in z,,..., z,. Its integral over all phase space is a

constant by Liouville’s theorem; hence we can normalized it to unity:
[z o dzyo(1,. N1 =1 (3.44)

Thus the ensemble average of any function O(1,..., N) of molecular coordinates
can be written as

(0) = fdzl - dzyp(1,..., N, t‘)O(l,...,N) (3.45)

Using the Hamiltonian equations of motion (3.38), we rewrite Liouville’s
theorem in the form
dp N
E - ';1 (Vp,p : Vr'.f— V,.‘P : vpx‘#) (3-46)

Assume that the Hamiltonian is of the form

=1 2m i<j
U, = U(r;) (3.47)
vy =V = v(|r,- — rj])
Then
|\
v, H=—
2 m
N 3.48
v, #= —F — Z Kij ( )
i j=]_
(J=*i)
where
Fi = _vr,U(ri)
(3.49)
K, = _Vr,v(|"i - "j|)
Liouville’s theorem can now be cast in the form
d A
— + hy(1,...,N)|p(1,...,N)=0 (3.50)

at
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p,

The single-particle distribution function is defined by

N

Hp,r, 1) = < 263(P—Pi)83(r—ri)> =Nfd22 coodzyp(1,...,N, 1)

: (3.52)

The factor N in the last form comes from the fact that all terms in the sum in the
preceding term have the same value, owing to the fact that p is symmetric in
zy,..., z. Integrating f, over z, yields the correct normalization N, by virtue of
(3.44).

The general s-particle distribution function, or correlation function, is
defined by

N!
fs(l,...,z,t) = (]V—_s)'fdzs_,_l dZNp(l,...,N,t) (S= 1,...,N)
(3.53)

The combinatorial factor in front comes from the fact that we do not care which
particle is at z;, which is at z,, etc. The equation of motion is

d N! a !
a_t ¢ = —(N—s)!.[dzs+1 Tt dZNEp_ - (N—S)' fdzs+1 U dZNhNF-)
(3.54)
We isolate those terms in A, involving only the coordinates z,,..., z,:
1 N
hy(1,.. N)—ZS+):S+—ZP.J.+— Y P+Z Z
=1 s+1 i, j=1 21',j=s+1 i=1 j=s5+1
(i#)) (1#))

s N
=h,(1,...,5) +hy (s+1,...,N)+ } X P, (355

i=1 j=s5+1

Note that

fszH cevdzyhy_(s+1,...,N)p(1,...,N) =0 (3.56)
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because %, _ consists of gradient terms in p with p-independent coefficients, and
a gradient term in r with an r-independent coefficient. Thus the integral evaluates
p on the boundary of phase space, where we assume p to vanish. Substituting
(3.55) into (3.54), we obtain

d N! s X
— +h = ————1d SRR P .p(l,...,N
(at s)fs (N_S)'—/ Zs+1 ZNi§1j=§+1 sz( > )
s N!
= = Z dzs+1Pi,s+1 _ dzs+2 e dZNp(19""N)
=1 (N—s5+ 1)

= = Z fdzs+lPi,s+1 s+1(l""’s + 1) (3-57)
i=1

In passing from the first to the second equation we have used the fact that the
sum over j gives N — s identical terms. Now substitute P,; from (3.51), and note
that the second term there does not contribute, because it leads to a vanishing
surface term. We then arrive at

a s
(E_i_hs)fv(l""’s): - Efdzs+1Ki,s+1.vp,fs+l(l""’s+1)
i=]

(s=1,...,N) (3.58)
which is the BBGKY hierarchy. The left side of each of the equations above is a
“streaming term,” involving only the s particles under consideration. For s > 1 it
includes the effect of intermolecular scattering among the s particles. The
right-hand side is the “collision integral,” which describes the effect of scattering
between the particles under consideration with an “outsider,” thus coupling f, to

S+

The first two equations in the hierarchy read

d P
(3 Tt R W a0 = = [ @K 420 (659)

dat m
d P1 P
’3_t + m *V, Tt ;.V’2+F1.VP1+F2.VP2+ %KIZ.(VPI _vpz)
sz(zl’zzat)
= - fdz3 (Kys V,, + Ky 0 9, )fi(21, 23, 23, 1) (3.60)

The terms in the equations above have dimensions f,/time, and different time
scales are involved:

1
K'Vp"'q_—c
1
F‘VI,"'T— (3.61)
p 1
_.Vr~_
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where 7, is the duration of a collision, 7, is the time for a molecule to traverse a
characteristic distance over which the external potential varies significantly, and
7, is the time for a molecule to traverse a characteristic distance over which the
correlation function varies significantly. The time . is the shortest, and 7, the
longest.

The equation for f, is unique in the hierarchy, in that “streaming” sets a
rather slow time scale, for it does not involve intermolecular scattering, (there
being only one particle present.) The collision integral, which has more rapid
variations, sets the time scale of f;,. This is why the equilibrium condition is
determined by the vanishing of the collision integral.

In contrast, the equation for f, (and higher ones as well) contains a collision
term of the order 1/7, on the left side. The collision integral on the right side is
smaller by a factor of the order nr; (where n is the density, and r, the range of
the intermolecular potential) because the integration of r; extends only over a
volume of radius 7,. Now 7, = 107% cm and n = 10" cm 3 under standard
conditions. Hence nry = 1075, Thus for f, (and higher equations too) the time
scale is set by the streaming terms instead of the collision integral, which we shall
neglect.

With neglect of the right side of (3.60), the hierarchy is truncated at f,, and
we have only two coupled equations for f, and f,:

a pl afl

(5'; + ” . Vrl)fl(z‘l’ t) = _frodzz K]z . Vplfz(zl, Z4, t) = (a_t)co“ (3_62)
J P P> .

E + — ‘v, + — *v,, t 5Ky, -(Vpl - sz) fz(zl, z,, t) =0 (3.63)

where we have set all external forces to zero, for simplicity. We shall also assume
for simplicity that the force K vanishes outside a range 7,. To remind us of this
fact, we put the subscript r, on the integral in the first equation, indicating that
the spatial part of the integral is subject to jr;, — r,| < .

The salient qualitative features of (3.62) and (3.63) are that f, varies in time
with characteristic period 7., and in space with characteristic distance r,, while f,
varies much less rapidly, by a factor nrj. Thus f, measures space and time with
much coarser scales than f,. -

The correlations in f, are produced by collisions between particles 1 and 2.
When their positions are so far separated as to be out of molecular interaction
range, we expect that there will be no correlation between 1 and 2, and f, will
assume a product form (neglecting, of course, possible correlations produced by
collisions with a third particle):

fZ(ZI’ZZ’t):;fl(Z’ 1) fi(z,, 1) (3.64)

To evaluate (df,/dt) ., however, we need f, not in the uncorrelated
region, but in the region where the two particles are colliding. To look at this
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Range of force

Fig. 3.8 Illustration of behavior of two-particle correlation function. The
separation between the two particles is r, and the relative momentum p.
The two particles are correlated only inside the range of the intermolecular
force, indicated by the sphere of radius r,. Outside the sphere, the
correlation function is a product of two one-particle distribution functions.
In equilibrium there is a steady scattering of beams of particles of all
momenta, from all directions, at all impact parameters.

region it is convenient to use total and relative coordinates, defined as follows:

P=p,+p, p= %
r,+r (3.65)
R= 2 r=r,—n
Then (3.63) becomes
(i+£- + 2.y 1K@ P,R =0
it At VKV, | PR B ) 66

K(r) = —vup(r)

Transform to the center-of-mass system by putting P = 0. The above can then be
rewritten, to first order in df, as the streaming condition (with P and R
suppressed for clarity):

fz(p + K(r) dt,r + %dt, t+ dt) = f,(p,r, t) (3.67)

It traces the classical trajectories in the force field K centered at O, as illustrated
in Fig. 3.8. If f, were peaked at point A initially, then (3.67) says that as time
goes on the peak will move along the trajectory for that particular initial
condition.
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The equilibrium situation, for which df,/dt = 0, is a steady-state scattering,
by the force field K, of a beam of particles consisting of all momenta, at all
impact parameters. Referring to Fig. 3.8, we may describe the steady state as
follows: Outside the sphere of interaction the uncorrelated factorized form (3.64)
holds. However, boundary values of the momenta are correlated through the fact
that momenta entering the sphere at a specific impact parameter must leave the
sphere at the correct scattering angle, and vice versa.

To “derive” the Boltzmann transport equation, we assume that, since f, has
a shorter time scale than f,, it reaches equilibrium earlier than f,. Thus we set
df,/dt = 0, and assume f, has attained the equilibrium form described earlier.
Similarly, we assume that the range of force r, is essentially zero from the point
of view of f,. Thus in the factorized form of f, just before and after a collision,
we can put r, and r; both equal to the same value.

With this in mind, we substitute (3.63) into (3.62) to obtain

df,
(E)coll - f,-odzz Ky Vple(Zl, Zy, t)

= - 4K, (v, = v, ) fs(21, 23,1)
o

1
= ;f de (pl ° vrl + | vrz)f2(zls Z3, t) (368)
o

Using the coordinates defined in (3.66), and neglecting the gradient with respect
to R, we have

(8_f1)coll= —%fd3p2f d3r(p1—p2)'V,fz

at r<n
1 3 X, ad
= — [p o~ ol [ dobad [“dx 1, (3.69)
*1

where the notation is indicated in Fig. 3.8. Now we set

fr(x,) =f1(P1)f1(P2)
fr(x3) = fi(p) f1(p5)

where pi,p; are the final momenta in the scattering process, when the initial
momenta are p,, p, and the impact parameter is b. Using the definition (3.21) of
the classical cross section, we finally have

(2

it ) - [ d°p,dQ, — vl(do/dQ)(fif; - 1,15) (3.70)

which is the same as (3.34).
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PROBLEMS

3.1 Give a few numerical examples to show that the condition (3.1) is fulfilled for
physical gases at room temperatures.

3.2 Explain qualitatively why all molecular interactions are electromagnetic in origin.

3.3 For the collision between perfectly elastic spheres of diameter a,

(a) calculate the differential cross section with classical mechanics in the coordinate
system in which one of the spheres is initially at rest;

(b) compare your answer with the quantum mechanical result. Consider both the low-
energy and the high-energy limit. (See, e.g., L. I. Schiff, Quantum Mechanics, 2nd ed.
(McGraw-Hill, New York, 1955), p. 110).

3.4 Consider a mixture of two gases whose molecules have masses m and M, respec-
tively, and which are subjected to external forces F and Q, respectively. Denote the
respective distribution functions by f and g. Assuming that only binary collisions between
molecules are important, derive the Boltzmann transport equation for the system.

3.5 This problem illustrates in a trivial case how the ensemble density tends to a uniform
density over the accessible phase space. Consider an ensemble of systems, each of which
consists of a single free particle in one dimension with momentum p and coordinate gq.
The particle is confined to a one-dimensional box with perfectly reflecting walls located at
g= —1 and ¢ = 1 (in arbitrary units.) Draw a square box of unit sides in the pg plane
(the phase space). Draw a square of sides 1/2 in the upper left corner of this box. Let the
initial ensemble correspond to filling this corner box uniformly with representative points.

(a) What is the accessible part of the phase space? (i.e., the region that the representative
points can reach through dynamical evolution from the initial condition.)

(b) Consider how the shape of the distribution of representative point changes at regular
successive time intervals. How does the distribution look after a long time?

Suggestion: When a particle is being reflected at a wall, its momentum changes sign.
Represent what happens in phase space by continuing the locus of the representative point
to a fictitious adjacent box in pg space, as if the wall were absent. “Fold” the adjacent
box onto the original box properly to get the actual trajectory of the representative point.
After a long time, you need many such adjacent boxes. The “folding back” will then give
you a picture oOf the distribution.



