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Abstract

The aim of this proget is to study the antikinetics behavior for a hard
sphere system and in order to obtain this we work at it through molecular
dynamics simulation and we analyze the H function.

1 Introduction

To study the kinetic and antikinetics behaviour of our system, we analize the
trend of the H(¢) function. It can be defined as it follows

H(t) = / 45 f (7.1) W[ (7., )]

where f(p,t) is the distribution of momenta. It can be proof that if f(p,t)
is the Maxwell-Boltzmann solution, in other words this means that we react
equilibrium, H(¢) is a monotonic decresing function. This is also called as
H-Theorem that shows that if we use the molecular chaos approximation, or
Stosszahlansatz, we obtain %t(t) < 0 and this represents if we start from a
correlated state during the simulation the two particles will be uncorrelate and
the system tends to equilibrium thanks to interaction.

Soon after Boltzmann published his results, some physics, like Zermelo and
Loschmidt, object Boltzmann thesis . The Zermelo paradox is out of our study,
because it refers to returning time and Poincare recurrence time. It’s known the
solution of this problem reguards the difference in time scale between the re-
turning time, find out from the Pincare theorem and duration of any observable.
The Loschmidt’s one is much complicated, from each microstate that approaches
equilibrium (kinetic behaviour), another state can be obtained reversing all the
molecular velocities and the system goes away from equilibrium. Does it true
for every time? In other words, if we invert the velocities of each particle in
different time, also once we reach equilibrium, the H function tends to its initial
value? If we put also a small error in the velocity inversion what will change
? In order to do that we performed molecular dynamics simulation for an hard
sphere system starting from a crystal described as follows.



2 Molecular dynamics for hard sphere

The molecular dynamics helps us to study the dynamics for a given system,
and it consists in the solution of the equation of motion for each particles using
determined programs, but in our example the scheme is a little different. During
our simulation, when the distance for two particles becomes equal there is a
discontinuity in our potential. To overcome this problem the principle aim of
the simulation is to locate the time, collision parameter and all impact factors
for each collusion occurring in the system in chronological order. Instead of a
step by step simulation like in the case of soft potential we analize the “collision
dynamics” and then search for the next collision. This scheme can be thought
as it follows:

e locate next collision;
e move all particles forward until collision occurs;
e implement collision dynamics for the collinding part;

e calcolate the collision properties, ready for averaging, before return to first
point;

To locate the collision time for hard sphere, means to find the solution of a
quadratic equation given by the definition. Considering two particles, i and 7,
of diameter o and whose positions are r;(t) and r;(¢t) and respective velocities
v; and v; . When a collison occurs then at ¢ = ¢ + t;;

|raj (£ + tig)| = [rij + vigtyy| = o

where 7;; = r; —r; and v;; = v; —v; . Defining b;; = r4; - v;; then we obtain

U?jt?j + Qbijtij + T,?j —0o=0.

If b;; > 0 then all the atoms are going away from each other, so no collision
occurs; instead for b;; < 0 but bfjvizj (r?j —0?) < 0 then we end up with complex
solution and this means that we have no solution. Otherwize we have two
positive roots from

—bij — [b?j - Uin(Tin - ‘72)]1/2
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The program should store the earliest upcoming collision time for each time,
and this list is called collision table. A method to handle with it consists into
identify by the index ¢ all the j particles that should collide with it, all the
collision time will be saved in an array coltime(i) and all the j collision partenrs
in partners(i). Thanks the function MINLOC we can find the minimum colli-
sion time ¢;;, and let evolve the system untill it reachest t;; and the table of
future collision times is adjusted accordingly. Now we focused on the second
point of the program: the calculation of colliding dynamics. Considering elastic
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Figure 1: In (a) there is the illustration of a collision between i-th particle and
j-th one. (b) vectorial construction of the velocities changing, (b) relation of
initial and final velocities.

scattering betwen atoms, so energy and momentum are conserved, the change
in velocity follows the relation

vi(after) = vi(before) + 0v; wvj(after) = v;(before) — ov;

with dv; = —%rij evaluated during the impact. For construction, Fig 1, dv;
corresponds to the negative projection of v;; along r;; direction.

After calculating the collision properties, we can restart and do all the colli-
sion times again and this is very expensive from a computational point of view,
but it’s not important to do all again because the collision regard only two
particles, i-th and j-th particles, and most of collision times and parteners will
remain the same. Clearly, we must know all the next collision partners of i
and j, then we have to examinate all the other atoms. Furthermore we have to
look at those particles were due to collide with the particle we examine, if these
two had not met each other first, for this we have to look for the partners with
“higher” indices. A part from this all components of coltime(i) and partners(i)
will be the same.



3 Results and conclusion

3.1 Study of distribution function of velocity and H func-
tion

Let’s consider our sample as a 2D square lattice with one atom for unit cell of
density 0.2 and all initial velocities have the same magnitude, for us is 1, and
direction random therefore the total momentum equal 0. Our time interval is
divided in blocks, similarly are made by time-step. Our purpose is to analyze
the non-equilibrium proprieties of the system, and this requires that our number
of time-step is one and fixed the number of block. From Fig [2] it’s possible to
see that after a certain time we reach equilibrium, and the distribution function
is the well-known Maxwell- Boltzmann, and due to H-Theorem the H goes to
his minimum value during the simulation unless it reaches the equilibrium.
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Figure 2: Distribution function of first component of velocities for the initial
state and after the simulation,

The time intervall to get the equilibrium state is the 200 blocks, but for dif-
ferent nblock we invert all the velocities, studying the trend of the H function.
So the scheme of this work is the following, once it’s done the forward trajectory,
after a certain time we invert all velocities and take as the new initial config-
uration. Then repeat the simulation for the same time intervall. In Fig [3] we
underline that for a certain number of blocks H comes back to his maximum
value, but once equilibrium is reached the function goes to a maximum value
lower than the initial one. This shows that the anti-kinetics behaviour presents
some kind of instability.
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Figure 3: H function trend starting from a crystal and after with reversing of
all atoms velocities for nblock = 20,40, 100.

It’s possible now to show directly the presition dependence of H putting
some noise in the velocities inversion. Therefore we introduce an error edirectly
in v = —v(1 +re), where € € [—1,1] is a random number and this gives us a
significant difference than before, and rgoes from e~® to e~2, and this means
as we decrese the r factor the inversion operation tends to the ideal one. The
presence of this error in the velocities inversion, tends to simulate the instability
of the anti-kinetic behaviour of H, and in particular it’s underlined in Fig [4]
that using different r factor the H function doesn’t go to the maximum value

we obtain before without e.


Sergio Ciuchi
Nella condizione iniziale H puo essere calcolata analiticamente e poi verificata nel programma


H function behaviour with error
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Figure 4: H function at nbloc = 40 it’s performed the velocities inversion for
different r-factor.

3.2 Study of distribution function of coordinates and mean
square displacement

We also study the coordinates distribution function and in particular the mean
square displacement. During the simulation we consider the periodic boundary
condition, and this make the trajectory with discontineous point, therefore our
first step is to correct this in order to obtain a contineous evolution for coordi-
nates. Once this problem is resolved, we compute the difference for each time
between the position and the initial one , (Ar(t)) = (r(t) — ro), and then make
the averege of the square of Ar.
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Figure 5: Plot the mean square displacement for the kinetic (blue) and anti-
kinetic behaviour where the velocity inversion take place at nblock = 40

The same procedure we did before, or rather calculate the H function defined
as before but instead of f(p,t) we used the distribution function of positions
and emegers an instability for anti-kinetic behaviour, and in particular when the
velocity inversion is performed at 100 blocks H doesn’t go in its initial value.
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Figure 6: Plot of H with time (block number) showing the kinetic and antikinetic
behaviour for velocity inversion taking place at 40 and 100 blocks.



