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Period of a Discrete Cat Mapping

Freeman J. Dyson and Harold Falk

1. INTRODUCTION. In studying the dynamics of a mechanical system one uses
time averages and phase-space averages [1] to describe the evolution. The exis-
tence and properties of the averages are part [2, 3, 4] of ergodic theory. The latter
theory is not restricted to mechanical systems described by Newton’s laws of
motion, but also deals with abstract dynamical systems such as the abstract
dynamical system involving the following mapping [4].

Let (x, y) denote a point in the unit square. The mapping takes (x, y) to the

new point
(;)E(i %)()yc) (mod1). (1.1)

The mapping preserves area (measure du = dx dy); is associated with a discrete-
time flow on a torus; and provides an example of a hyperbolic toral automorphism
[4, 5]. In an abstract sense the flow relates to the phase-space flow described by the
Liouville Theorem [6].

Let X denote the initial point (x, y) and let ¥, denote the image of X after n
iterations of (1.1), n = 0,1,2,... . The time average of a complex-valued function
f, defined on the unit square and w-integrable, is

1 N-1
<f(x)>time= Iéll)'nmj—v—ngof(xn)’ (1.2)
and the phase-space average of f is

H= F(%) du (1.3)

unit square

Since phase-space averages are widely employed and play a prominent role in
statistical mechanics, a natural question is: Is {f) equal to {f(X))tme? The
following concept of mixing [4] has been a useful tool in pursuing an answer to that
question.

Let & denote a measurable subset of .# (.# is the unit square in our example,
and u(.#) = 1). Let &7, denote the image of &7 after n iterations of the mapping
(1.1). If for every pair of measurable subsets & and & of .#,

lim w(, N B) = w( L )u(B) /u(A), (1.4)

the mapping (more precisely, the dynamical system) is mixing.

For a mixing dynamical system view & as a two-dimensional ink droplet and
w() /u(A) as the “concentration” of ink in the unit square. Then after “many”
iterations the ratio u(&Z, N &)/ u(H) (for u(#) # 0) represents the concentra-
tion of ink in . According to (1.4), that concentration should also be
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W) /u(A#). Thus, the ink drop has been somewhat uniformly “smeared” over
the unit square.

The mixing property is heuristically demonstrated [4, 2] by placing a picture of a
cat in the unit square and then displaying several subsequent images resulting from
the flow. The images show that the cat tends to become ‘“smeared” over the unit
square.

It has been shown [4] that the above hyperbolic toral automorphism is mixing,
and mixing implies [4] that

(f(X)ime = {f), almost everywhere. (1.5)

A mapping having the above mathematical properties and connections with
statistical mechanics has an “intellectual domain of attraction,” and we were
drawn in. This paper documents our pleasant experience.

The computer is a convenient device for demonstrating mappings, where the
screen serves as a two-dimensional lattice of points (pixels). For the purpose of
demonstration, consider a square lattice of points and denote the points by (x, y).
Restrict x and y to the integer values 0,1,..., N — 1 with the operations of
addition and multiplication performed (mod N). The mapping (1.1) is approxi-
mated by the mapping

(;)E(i ;)()yc) (mod N) (1.6)

where x and y are integers in [0,1,..., N — 1]. N will typically be selected so as
to make ample use of the capability of the screen; we take N = 161 as an example.
Note that the computer deals precisely with the arithmetic operations of the
mapping (1.6); the problem of round-off error does not arise.

Figure 1 displays “snapshots” of the early iterations of the mapping (1.6),
starting with the initial “cat” configuration. The tendency to mix is evident, but
one knows that the initial configuration must eventually return, since there are
2NXN possible configurations of the N X N pixels, where each pixel is either “on”
or “off.” However, for N = 161 the number 2V*V is large, and it was surprising to
see the cat configuration return after only 24 iterations. This paper contains
theorems which explain the observed periodicity.

It will be convenient to use the matrix

_ (0 1 2 _[1 1
A—(1 1), whereA—(1 2)

and the Fibonacci sequence uy =0, u; =1, u, =1, u3=2, u,=3,...,[u,,, =
u,,, + u,l. Then the nth iteration of the mapping (1.6) is

Usn Usp+1

Uy, _ U,
A2n=( 2n—1 2 ) (n=1,2,3,...). (1.7)

For a given N the period m, of the mapping (1.6) is the smallest positive
integer »n such that

Uy, =0 (mod N)

and (1.8)
Uy, =1 (modN).

[Note that (1.8) implies u,, ., = u,,,, = 1 (mod N).] Thus, the period is related
to the divisibility properties of Fibonacci numbers.
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Figure 1. “Snapshots” of the initial “cat” configuration and of the images at t = 1, =2 and t =5
under the mapping given by Eq. (1.6) for N = 161. That is, top row left to right: = 0, ¢t = 1; bottom
row left to right: t = 2, ¢t = 5.

We will use theorems contained in Hardy and Wright [7], and we refer to
specific theorems as numbered in the fifth edition; e.g., HW Thm. 97 [7]. Two
useful identities [8] are:

For any positive integers k, r

Ugpr = Uy T Ug_ U, (1.9)
k
(=1)" =y ey — u. (1.10)
These identities may be extended to all integer values &, r if one defines
o= (=1)""'u, fork=0,1,2,3,.... (1.11)

2. UPPER BOUNDS FOR THE PERIOD. Our first upper bound for the period is
my < N?/2 for N > 2. Consequently, m, does not grow exponentially with N.
To derive that bound we retrace the path of Vorob’ev [9] and write

u,=¢, (modN) (2.1)

where ¢, is the least non-negative residue of u, to modulus N. Consider the
sequence of ordered pairs (¢, #,),{Ps, #3),...,{D, P +1)... . There are at
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most N2 distinct pairs. Any set of N2 + 1 pairs contains some equal ones among
them.

Lemma 1 [9]. The first pair that repeats in the above sequence is {1,1).
Proof: Assume the opposite; i.e., that the first repeated pair is {¢,, ¢, 7, where

k > 1. Let us find in the sequence a pair {¢,,¢,,,» (r > k) such that ¢, = &,,
¢y .1 = ¢,,,. From the definition of the Fibonacci numbers

(;br—l = ¢r+1 - d)r (22)
Gr-1= b1 — i (2'3)
SO
bro1 = b1 (2.4)
and we have
(br_1:b,) = by_1, D) (2.5)

But {¢,_,, ¢, is situated earlier in the sequence than {¢,, ¢, ,»; therefore
(s, br+) is not the first pair that repeats itself. So the supposition k > 1 is
wrong, and we must have k£ = 1. That proves the Lemma.

Theorem 1 [9]. For any positive integer N at least one number divisible by N can be
found among the first N? Fibonacci numbers.

Proof: From the Lemma (1, 1) is the first pair that repeats itself. So {&,, ¢, ,) =
(1, 1) for some integer ¢ such that 1 <t < N? + 1. Thus

¢, =1 (modN) (2.6)
and
¢,.1,=1 (modN). 2.7)
But
Uy T Uppr — Uy (2.8)
therefore,
¢,_,=0 (modN), (2.9)

and the Theorem is proved.

Lemma 2. For N> 2 ifu, =0 (mod N) and u, ., =1 (mod N), then n must be
even.

Proof: The Lemma is equivalent to the statement that for N > 2 if A" =1
(mod N), then n is even. But the determinant det(A4) = —1, so det(A") =
(det A)” = (—1)" = 1 (mod N). Hence n must be even.

Theorem 2. For N > 2 the period m, of the mapping (1.6) satisfies
my < N?/2. (2.10)

Proof: From Lemma 1 and Theorem 1, the first reappearance of the pattern 0, 1, 1

in the sequence ¢q, ¢y, d,, b3,...,d,, d,.q,... occurs for ¢,_, d,, d,,,, where
0<t—1<N? From Lemma 2, t — 1 must be even. From the definition of the

period one has 2m, = ¢t — 1. That proves the Theorem.
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Numerical results for m,, indicate that the bound is rather loose; nevertheless,
the bound establishes that m, does not grow exponentially with N. The method
which will be used subsequently to prove Theorem 3 also gives a stronger Theorem
than Theorem 1; viz.,

Theorem 1. For any positive integer N, at least one Fibonacci number u, = 0
(mod N) with n < 2N.

Remark. We have n < 12N /7 except in cases N =6 5% 6 =0,1,2,..., when
n=2N.

Remark. From Theorem 1, for any positive integer N there is an n < 2N such
that u,, = 0 (mod N). Identity (1.9) then implies u,, = 0 (mod N). One now may
use Theorem 5 to write

my < 2n < 4N. (2.11)

That is a substantial improvement over (2.10), but Theorem 3a is a little stronger
still.

Next we give a much tighter upper bound for m,. The bound, denoted by m*,
is always an integer multiple of the period m, for the mapping (1.6). The bound is
based on the following Theorem, which may be viewed as an extension of HW
Thm. 180 [7].

Theorem 3. Let p be a prime = +1 (mod 10). Then A?~! = 1 (mod p). Let q be a
prime = +3 (mod 10). Then A?*' = —1 (mod q). For the prime 5, A" = —1
(mod 5); and for the prime 2, A° = 1 (mod 4).

Application of Theorem 3 to the periodicity of the mapping (1.6) is made as
follows.

Consider a positive integer N > 1 and write N in terms of its prime factors p
and g, which were referred to in the above Theorem.

N = ( Hp“)( I‘Iqﬁ)svz‘s (2.12)
PIN q|N

where the notation p|N means “p divides N.” Since a will always be associated

with p, and B with g, we will avoid the notation «, and B,.

As A?~''=1 (mod p), it follows from HW Thm. 78 [7] that A~ DF*"" =1
(mod p®). Further, the congruence A7"!'= —1 (mod gq) implies A%*7*D =1
(mod q), and HW Thm. 78 [7] gives AX9*D4"™" = 1 (mod ¢”). Finally, the congru-
ence A° = —1 (mod5) implies A9 =1 (mod57), and A°=1 (mod4)
implies 432" = 1 (mod 2%).

For a given N, the period of the mapping (1.6) was defined to be the smallest
positive integer m, such that 4>™ = 1 (mod N). To find an upper bound m* on
m, compute the least common multiple [LCM]

2m* = LCM[(p — 1)p®~1,2(q + 1)q#~1,2(10)57 "1, (3)2°]  (2.13)

with
e = Max(é — 1,1). (2.14)
Each factor in (2.12) has a corresponding term in the LCM. Therefore (2.12) and
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(2.13) imply
A" =1 (mod N), (2.15)
so that m™* is a multiple of m, and
my < m*. (2.16)

In the particular case mentioned above, N = 161 = 7 - 23; only the two primes
g =7 and g = 23 play a role, and B = 1 for each. Thus m* = 24, equal to the
value we found for m,. Numerical results for m, and m* indicate that the
inequality (2.16) is satisfied as an equality for most values of N < 10°.

We call an integer N “primitive” if m, = m*. A primitive N is one whose
period m, achieves the upper bound, m*. Thus, 161 is primitive. To our surprise
we found that the great majority of small N are primitive. The first non-primitive
N is 29, with m, = 7, m* = 14. We looked at three stretches of 100 values of N
and found:

1 <N <100, 96 are primitive,
901 < N < 1000, 84 are primitive,
999901 < N < 1000000, 82 are primitive.

So far as they go, these numbers suggest that the fraction of primitive N is
tending to a limit substantially greater than 0.5 as N — «. However, we conjecture
that the opposite is true.

Conjecture. The fraction of primitive integers not exceeding N has the asymptotic
behavior

F(IN) ~ ——M— 2.17
(V) logloglog N ( )
as N — o, where
log(10/3)
K=e 7’| ——| =0.975, 2.18
¢ ( log2 ( )

and vy is Euler’s constant.

Since logloglog 10° = 0.965, our numerical data do not begin to test the validity
of (2.17).

The argument leading to (2.17) is probabilistic and makes no claim to be
rigorous. According to HW Thm. 436 [7], almost all integers not exceeding N have
about

y = loglog N (2.19)

distinct prime factors, which will appear in the definition (2.13) of m*. For N to be
primitive it is necessary and sufficient that

AP /521 (mod N), (2.20)
for every prime s dividing 2m*. Now the matrix
B =A4>"/s (2.21)
satisfies the congruence
=1 (mod N). (2.22)
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We wish to estimate the probability that B # 1 (mod N). If N is a p-prime,
then s must be a divisor of (N — 1) and the congruence (2.22) has exactly s roots.
We assume that each of the roots has equal probability s~! of being (2.21). Then
the probability that (2.20) holds is

1-s"L (2.23)

If N is a g-prime, then s must be a divisor of 2(g + 1) and again the
congruence (2.22) has s roots in the field generated by 4 (mod N). If s is an odd
prime, the estimate (2.23) holds as before. But for s = 2, we know from Theorem 3
that B = —1 (mod N) and therefore (2.20) holds with probability 1.

When N is composite, we assume that the probabilities for (2.20) to hold are
independent for all primes s dividing 2m™. The probability for N to be primitive is
then

F(N)=(1- (1 - Q))pl—lz(l - s_lds), (2.24)

where d, is the probability that the odd prime s divides 2m*, and Q is the
probability that the highest power of 2 in the LCM (2.13) belongs to one of the
terms 2(q + 1). Since each s has roughly y chances to divide one of the factors
appearing in (2.13),

d,=1-(1-s1". (2.25)

To estimate Q, we suppose that each term (p — 1) or (g + 1) appearing in

(2.13) is divisible by 2% with probability 2%, k = 1,2,3,..., . For large N, the
number of p-primes and g-primes will both be approximately

M=1iy. (2.26)

The probability that k; is the highest power of 2 dividing any (p — 1) is r(k,),
and the probability that &, is the highest power of 2 dividing any (¢ + 1) is r(k,),
where

r(k) = (1 -279" — (1 = 21-9)™, (2.27)

Q is the probability that
1+k, > k. (2.28)

Thus
0= XY r(ky)r(k)

1+ky>k,

=Y (-2 - -2%)")a - 271" (2.29)
k

For large M we may replace the sum over k by an integral over a continuous
variable u given by

e *=1-27% (2.30)
Then (2.29) becomes in the large-M limit

0= (10g2)_1fm(e“ — 1) (e~ G/IMU _ o=G/DMuy gy,
0

= (log %/logZ), (2.31)
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and (2.24) becomes

F(N) = (log 1?O/logZ) [1(1-s""4,), (2.32)

with the product extending over all primes s. A more exact analysis of the sum
(2.29) shows that Q contains also an extravagantly small oscillating term

Y. Ay cos(2mk(log2) ~'(logloglog N) + §,), (2.33)
k=1

with amplitude
Ay ~ exp(—m*(log2) "'k) ~ 107 (2.34)

which we shall neglect.
We return to (2.32) with d; given by (2.25). The factors in the product can be
crudely approximated by

d,=(1—-s"1) fors <y,
d,=1 for s > y. (2.35)
The error in (2.35) is small when s is either small or large compared with y. The

maximum error is of order y~! for primes s in the neighborhood of y. The
number of such primes is of order

(y/(log y)). (2.36)

Therefore, the fractional error introduced by (2.35) into the product (2.32) is of

order (log y)~!. A more careful analysis shows that the leading term in the error is
a factor

1-y(logy) ™", (2.37)
where v is Euler’s constant. Neglecting this factor, we find from (2.32) and (2.35)
F(N) ~ (log % /log2) [T (1 —s7%). (2.38)

s<y

Finally, HW Thm. 430 [7] (Mertens’s Theorem) says

-1 e_y
S];[y(l s ~ gy’ (2.39)
and this with (2.18), (2.19), and (2.38) gives (2.17).
From (2.13) and (2.16) one may derive a simpler upper bound for m,.
Theorem 3a.
my < 3N. (2.40)
Moreover, (2.40) holds with equality if and only if
N=2 5" (2.41)
For all N except for (2.41) we have
my < 2N, (2.42)
with equality only for
N=157, N=6"-5". (2.43)
For all N except for (2.41) and (2.43) we have
12
my < 7N . (2.44)
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We could find smaller bounds with larger lists of exceptions, but beyond (2.44) it
seems unprofitable to go.

Proof of (2.40)-(2.44). Consider the ratio
R=(m*/N) = (my/N), (2.45)
with N given by (2.12) and m™* by (2.13). The definition of an LCM gives

2Rs(]_[(1—p_1))(l—”2(1 +q—1)]) 4327k (2.46)
PIN qIN

where the factor 4 appears if y > 1, the factor 3 appears if § > 1, and k is the
number of powers of 2 that appear redundantly in the various terms of (2.13). We
wish to choose N to make R as large as possible. By (2.46), R will be increased by
dropping all the p-primes from N. Since each g-prime gives a term in (2.13)
divisible by 4, R will be increased by dropping all of the g-primes except one, and
by dropping all except one power of 2. We are left with only the following simple
choices for N giving possibly maximum values for R,

N=57,5"-3857.78 2.57 6-57,2-57- 7B (2.47)
giving respectively
R=2,4/3,8/7,3,2,12/17. (2.48)

This proves the inequalities (2.40), (2.42), (2.44) and proves that the cases of
equality are at most (2.41) and (2.43). It remains to prove that equality holds, i.e.,
my = m*, in the cases (2.41), (2.43).

The Lucas numbers v, are related to the Fibonacci numbers by

Up = Up_q + Upiq- (2.49)
By (1.7) and (1.11), the matrix A generates Fibonacci and Lucas numbers by
A%* + 47 = p,, (2.50)
AP — A7k =y, -5, (2.51)
where V5 [in this section] stands for the matrix
V5 =4 +A‘1=(_; %) (2.52)
whose square is 5. Now (2.50) and (2.51) give
Uy = 5- u%k + 2, (2.53)
Uigr = Ug (1 + vy + vgg) =5 g (1 + ul, + uﬁk). (2.54)
(2.54) implies
U, =0 (mod5), (2.55)
Usor/Uror =5 (mod 125). (2.56)

Thus u,, is divisible by exactly one more power of 5 than u,,,. Now Theorem 3
with (2.51) shows that u,, is periodic (mod 5) with period 10, so that

Uy #0 (modS5) fork #0 (mod5). (2.57)

This with (2.54) implies
U 70 (mod25) fork #0 (mod5). (2.58)
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Together (2.55), (2.56), (2.57), and (2.58) imply
Uy, =0 (mod5”) ifandonlyif k =0 (mod5”). (2.59)

This means that for any N divisible by 57, m,, is also divisible by 5”.
Consider in particular N = 2 - 57, which has m,, dividing m* = 6 - 57. We have
proved that m,, is divisible by 5”. Since N is divisible by 5 and by Theorem 3

A% = -1 (mod5), (2.60)

m, must also be divisible by 2. Since N is even, m, must be divisible by 3.
Therefore m, = m* and (2.40) holds with equality. The same argument shows that
(2.42) holds with equality for N given by (2.43).

3. LOWER BOUNDS FOR THE PERIOD AND EXPLICIT VALUES FOR
PARTICULAR CASES.

Theorem 4. Both u,, = 0 (mod N) and u,,_, = 1 (mod N) if and only if

U,, =0 (modN). (3.1)

Proof: The identities
Ugn = UppUzp, (32)
Ugp—1 — 1= UrpnUop—15 (33)

imply the “if” part of the theorem immediately. The “only if” is equivalent to the
statement that (v,,_,, v,,) are coprime, which is contained in HW Thm. 179 [7].

Theorem 5. For N > 2 let n be the smallest positive integer such that u,, =0
(mod N). Then either my = n or my = 2n.

Proof: By Theorem 4, n is the smallest integer such that

A*" =1 (mod N), (3.4)
while m; is the smallest such that
A*"~ =1 (mod N). (3.5)

Integers satisfying (3.4) are multiples of n, and integers satisfying (3.5) are
multiples of m,. Therefore, m, is a multiple of », and 2n is a multiple of m,.
The conclusion follows.

Theorem 6. Given N = u,, with n = 2,3, ...; there does not exist an N' > N with
even period, my, < 2n.

We give the proof of Theorem 7; the proof of Theorem 6 is similar.

Theorem 7. Given N = v,,_; withn = 2,3,...; there does not exist an N' > N with
odd period, my, < 2n — 1.

Proof: Assume my, = 2n' — 1 < 2n — 1 so that

Ugy_», =0 (mod N') (3.6)
and

Uyy_3=1 (mod N'). 3.7
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Then from Theorem 4
Uyy_1 =0 (mod N). (3.8)
But if 2n' — 1 < 2n — 1, then
Upwy SUpyy Sl g+ 2Uy, 5
=Uyy F Uy
=N<N'. (3.9)
That contradicts (3.8) and completes the proof of the Theorem.

Corollary. For N' > v,,_; withn = 2,3,...; my > 2n.

Proof: Since u,, + u,,_, > u,,, the condition N’ > u,, + u,,_, implies the con-
dition N’ > u,,. By Theorem 6 there are no even periods m,, < 2n, and by
Theorem 7 there are no odd periods m,, < 2n — 1. That proves the corollary.

The corollary provides a “staircase” lower bound for m, as a function of N.
This bound may be expressed in the following way.

Define
N(n) =u, for neven
=v, forn odd (3.10)
and let
A= (1+V5)/2. (3.11)
Then for n even and N > N(n), any even period
my>n> [log(N(n)\/g)]/log Ay (3.12)
and for n odd and N > N(n), any odd period
my >n > [log N(n)]/log A,. (3.13)
These results may be summarized in
Theorem 8. For any integer N,
my > [log(N\/g)]/log A, ifmy iseven, (3.14)
my > [log N/log A, ] if my isodd. (3.15)

In the context of chaos, others [10] have displayed an approximate recurrence of
a digitized image of an appropriately selected subject; viz., Henri Poincaré. The
importance of background fluctuations is pointed out in that article.

Theorem 9.
(a) For N = u,,, my =2n,(n > 1). (3.16)
(b) For N = u,, _,, my =4n —2,(n > 2). 317
(c) ForN =v,,, my = 4n. (3.18)
(d) ForN = v,,_,, my=2n—1. (3.19)
(e) ForN =v,,—1, my=6n. (3.20)
(f) ForN =v,,+1, my=3n. (3.21)

[Note, e.g., N = 842, 843, 844 yield m, = 42, 28, 21, respectively.]
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Proof: The proofs of each part are similar so we choose to select a few for detailed
presentation and sketch the others. For part (a) since u,, = 0 (mod N), we find
from Theorem 4 that 2n satisfies the conditions defining m, and is therefore a
multiple of m,. But u,,, _, =1 (mod N) implies Uppmy—1 > Up, and 2my — 1 >
2n. Therefore, 2n can only be my,.

Part (c) is proved by using u,, = u,,0,, =0 (mod N) and Theorem 4 to
establish that 4x is a multiple of m,. From the Corollary following Theorem 7 one
concludes that m, > 2n. Consequently, 4n = m,,.

Part (d) is proved by making use of the two identities u,,_, = u,,_v,,_; and
Ugp—1 — 1 =uy,0,,  to show that 2n — 1 is a multiple of my. But u,,, ;=1
(mod N) implies u,,, _, > N, where N = v,, ;> u,,_, so that 2n — 1 < 2my,.
A multiple of m,, satlsfymg the latter condition can only be m, itself. Parts (e)
and (f) are proved by using the identity ug, = u,,(v,, — 1Xv,, + 1) along with
part (a). The proof of part (b) is a bit more involved. One uses (1.9) to obtain
Uy,_» = 0 (mod N) and then one uses Theorem 4 to obtain 4%~ % =1 (mod N)
so my divides 4n — 2. But N > v,, _,, so the Corollary following Theorem 7 says
my > 2n — 2. The only possibilities are my = 4n — 2 or 2n — 1. Assume that
my=2n—1. Then u,, ;=1 (modu,,_,), but u,, =1+ u,, ,v,,_, $O
Uy, _oUs,—1 =0 (mod u,, ;). According to HW Thm. 179 [7], u, and u, ., are
coprime, while u, and v, have at most one common factor 2. Thus, the congru-
ence u,, _,U,,_; = 0 (mod u,,_,) is possible only if u,,_; =1or2, n =1 or 2.
This explains why (b) fails for n < 2.
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