
Period of a Discrete Cat Mapping
Author(s): Freeman J. Dyson and Harold Falk
Source: The American Mathematical Monthly, Vol. 99, No. 7 (Aug. - Sep., 1992), pp. 603-614
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2324989 .

Accessed: 23/05/2013 04:20

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to
The American Mathematical Monthly.

http://www.jstor.org 

This content downloaded from 192.84.154.73 on Thu, 23 May 2013 04:20:18 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=maa
http://www.jstor.org/stable/2324989?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Period of a Discrete Cat Mapping 

Freeman J. Dyson and Harold Falk 

1. INTRODUCTION. In studying the dynamics of a mechanical system one uses 
time averages and phase-space averages [1] to describe the evolution. The exis- 
tence and properties of the averages are part [2, 3, 4] of ergodic theory. The latter 
theory is not restricted to mechanical systems described by Newton's laws of 
motion, but also deals with abstract dynamical systems such as the abstract 
dynamical system involving the following mapping [4]. 

Let (x, y) denote a point in the unit square. The mapping takes (x, y) to the 
new point 

(Y ) 1 2)(Y) (mod1) (.1 

The mapping preserves area (measure dli = dx dy); is associated with a discrete- 
time flow on a torus; and provides an example of a hyperbolic toral automorphism 
[4, 5]. In an abstract sense the flow relates to the phase-space flow described by the 
Liouville Theorem [6]. 

Let x denote the initial point (x, y) and let x' denote the image of x after n 
iterations of (1.1), n = 0, 1, 2, . The time average of a complex-valued function 
f, defined on the unit square and ,t-integrable, is 

1 N-1 

<f(x)>time Xnim Zf(.xn), (1.2) 
N-oNn=O 

and the phase-space average of f is 

unit| f(i)d( (1.3) 
unit square 

Since phase-space averages are widely employed and play a prominent role in 
statistical mechanics, a natural question is: Is <f ) equal to K ff())time? The 
following concept of mixing [4] has been a useful tool in pursuing an answer to that 
question. 

Let v denote a measurable subset of X/ (X' is the unit square in our example, 
and /x(.) = 1). Let Vn denote the image of v after n iterations of the mapping 
(1.1). If for every pair of measurable subsets v and q of X, 

lim tL( Vn nl ) () ( 1.4) n -oo 

the mapping (more precisely, the dynamical system) is mixing. 
For a mixing dynamical system view v as a two-dimensional ink droplet and 

tLGV)/,u(I) as the "concentration" of ink in the unit square. Then after "many" 
iterations the ratio tL(IVn rn g)/FuC) (for 4tt,q) * 0) represents the concentra- 
tion of ink in 9. According to (1.4), that concentration should also be 
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u(v)/~C,*'). Thus, the ink drop has been somewhat uniformly "smeared" over 
the unit square. 

The mixing property is heuristically demonstrated [4, 2] by placing a picture of a 
cat in the unit square and then displaying several subsequent images resulting from 
the flow. The images show that the cat tends to become "smeared" over the unit 
square. 

It has been shown [4] that the above hyperbolic toral automorphism is mixing, 
and mixing implies [4] that 

< f ( x)e)tinme = <f>, almost everywhere. (1.5) 
A mapping having the above mathematical properties and connections with 

statistical mechanics has an "intellectual domain of attraction," and we were 
drawn in. This paper documents our pleasant experience. 

The computer is a convenient device for demonstrating mappings, where the 
screen serves as a two-dimensional lattice of points (pixels). For the purpose of 
demonstration, consider a square lattice of points and denote the points by (x, y). 
Restrict x and y to the integer values 0, 1, . . ., N - 1 with the operations of 
addition and multiplication performed (mod N). The mapping (1.1) is approxi- 
mated by the mapping 

(Y$) (1 2)(Y) (mod N) (1.6) 

where x and y are integers in [0,1,. .., N - 1]. N will typically be selected so as 
to make ample use of the capability of the screen; we take N = 161 as an example. 
Note that the computer deals precisely with the arithmetic operations of the 
mapping (1.6); the problem of round-off error does not arise. 

Figure 1 displays "snapshots" of the early iterations of the mapping (1.6), 
starting with the initial "cat" configuration. The tendency to mix is evident, but 
one knows that the initial configuration must eventually return, since there are 
2NXN possible configurations of the N x N pixels, where each pixel is either "on" 
or "off." However, for N = 161 the number 2NXN is large, and it was surprising to 
see the cat configuration return after only 24 iterations. This paper contains 
theorems which explain the observed periodicity. 

It will be convenient to use the matrix 

A = ( 1 ),where A 2= (1 2) 

and the Fibonacci sequence uo = 0, u1 = 1, u2 = 1, U3 = 2, U4 = 3, .. ., [un+2= 
un+1 + un]. Then the nth iteration of the mapping (1.6) is 

= U2n1 U2nl (n= 1,2,3,...). (1.7) u2n U2n+1 

For a given N the period mN of the mapping (1.6) is the smallest positive 
integer n such that 

u2= -0 (mod N) 
and (1.8) 

U2n_-1 1 (mod N)-. 

[Note that (1.8) implies U2n+1 U2n+2 1 (mod N).] Thus, the period is related 
to the divisibility properties of Fibonacci numbers. 
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Figure 1. "Snapshots" of the initial "cat" configuration and of the images at t 1, t 2 and t = 5 
under the mapping given by Eq. (1.6) for N = 161. That is, top row left to right: t = 0, t = 1; bottom 
row left to right: t = 2, t = 5. 

We will use theorems contained in Hardy and Wright [7], and we refer to 
specific theorems as numbered in the fifth edition; e.g., HW Thm. 97 [7]. Two 
useful identities [8] are: 

For any positive integers k, r 

Uk+r = UkUr+1 + Uk-iUr (1.9) 

_ ) k 2 U2 (1.10) 

These identities may be extended to all integer values k, r if one defines 

U_k = (1)k Uk for k = 0, 1, 2,3,... . (1.11) 

2. UPPER BOUNDS FOR THE PERIOD. Our first upper bound for the period is 
mN ? N2/2 for N > 2. Consequently, mN does not grow exponentially with N. 

To derive that bound we retrace the path of Vorob'ev [9] and write 

Un = ?kn (mod N) (2.1) 
where 04n is the least non-negative residue of u,, to modulus N. Consider the 
sequence of ordered pairs < 21, 42>K v<3>, 2 v ? ...XKn, Xn+1)... . There are at 
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most N2 distinct pairs. Any set of N2 + 1 pairs contains some equal ones among 
them. 

Lemma 1 [9]. The first pair that repeats in the above sequence is (1, 1). 

Proof: Assume the opposite; i.e., that the first repeated pair is K Pk, Pk ? 1), where 
k > 1. Let us find in the sequence a pair K4r, Or?I) (r > k) such that Pk = Or, 

Pkll = Pr,,. From the definition of the Fibonacci numbers 

Pr-1 = Pr+ 1 Or (2.2) 

Pk-1 k k+1 -k (2.3) 
so 

Pr-1 =k-1 (2.4) 
and we have 

<4r-1v r>) = k-1Pvlbk ) * (2.5) 
But K4k-1,0k) is situated earlier in the sequence than KPk, k?+ 1 ); therefore 
<Okl Pk+l) is not the first pair that repeats itself. So the supposition k > 1 is 
wrong, and we must have k = 1. That proves the Lemma. 

Theorem 1 [9]. For any positive integer N at least one number divisible by N can be 
found among the first N2 Fibonacci numbers. 

Proof: From the Lemma K1, 1) is the first pair that repeats itself. So K + 1) = 

(1, 1) for some integer t such that 1 < t < N2 + 1. Thus 

t 1 (mod N) (2.6) 
and 

ot +I 1 (mod N). (2.7) 
But 

Ut_l = Ut+1 - ut; (2.8) 
therefore, 

Pt-l -0 (mod N), (2.9) 
and the Theorem is proved. 

Lemma 2. For N > 2 if un (mod N) and un+i 1 (mod N), then n must be 
even. 

Proof: The Lemma is equivalent to the statement that for N > 2 if An = 1 
(mod N), then n is even. But the determinant det(A) = -1, so det(An) = 
(det A)n = (- 1)n = 1 (mod N). Hence n must be even. 

Theorem 2. For N > 2 the period mN of the mapping (1.6) satisfies 

mN ? N2/2. (2.10) 

Proof From Lemma 1 and Theorem 1, the first reappearance of the pattern 0, 1, 1 
in the sequence P0, P1, 0P2' 03' v .On, 'n+1'... occurs for t-II tI ot + where 
0 < t - 1 < N2. From Lemma 2, t - 1 must be even. From the definition of the 
period one has 2mN = t - 1. That proves the Theorem. 
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Numerical results for mN indicate that the bound is rather loose; nevertheless, 
the bound establishes that mN does not grow exponentially with N. The method 
which will be used subsequently to prove Theorem 3 also gives a stronger Theorem 
than Theorem 1; viz., 

Theorem 1'. For any positive integer N, at least one Fibonacci number u -0 
(mod N) with n < 2N. 

Remark. We have n < 12N/7 except in cases N = 6 * 5", a = 0, 1, 2,..., when 
n = 2N. 

Remark. From Theorem 1', for any positive integer N there is an n < 2N such 
that un =0 (mod N). Identity (1.9) then implies u2n 0 (mod N). One now may 
use Theorem 5 to write 

mN < 2n < 4N. (2.11) 

That is a substantial improvement over (2.10), but Theorem 3a is a little stronger 
still. 

Next we give a much tighter upper bound for MN. The bound, denoted by m*, 
is always an integer multiple of the period mN for the mapping (1.6). The bound is 
based on the following Theorem, which may be viewed as an extension of HW 
Thm. 180 [7]. 

Theorem 3. Let p be a prime ?1 (mod 10). Then AP 1 (mod p). Let q be a 
prime +3 (mod 10). Then A ' -1 (mod q). For the prime 5, A10 -1 
(mod 5); and for the prime 2, A 6 1 (mod 4). 

Application of Theorem 3 to the periodicity of the mapping (1.6) is made as 
follows. 

Consider a positive integer N > 1 and write N in terms of its prime factors p 
and q, which were referred to in the above Theorem. 

N = 1 pa)( ll q)5y28 (2.12) 
PIN qlN 

where the notation pIN means "p divides N." Since a will always be associated 
with p, and ,B with q, we will avoid the notation ap and 13q. 

As AP-1-I (mod p), it follows from HW Thm. 78 [7] that Ap1p _ 1 
(mod Further, the congruence A"+ -1 (mod q) implies A2( +1) 1 
(mod q), and HW Thm. 78 [7] gives A2 " 1)q6 1 (mod q1). Finally, the congru- 
ence A10 -1 (mod 5) implies A2(10)5' 1 (mod 5y), and A6 1 (mod 4) 
implies A3 1 (mod 28). 

For a given N, the period of the mapping (1.6) was defined to be the smallest 
positive integer mN such that A2 =1 (mod N). To find an upper bound m* on 
MN, compute the least common multiple [LCM] 

2m* = LCMj[(p - 1)pal- ,2(q + 1)qP- 1,2(10)5'Y-1,(3)2?] (2.13) 

with 
E = Max(a - 1, 1). (2.14) 

Each factor in (2.12) has a corresponding term in the LCM. Therefore (2.12) and 

1992] PERIOD OF A DISCRETE CAT MAPPING 607 

This content downloaded from 192.84.154.73 on Thu, 23 May 2013 04:20:18 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


(2.13) imply 

A2m* 1 (mod N), (2.15) 

so that m* is a multiple of mN and 

mN < M*. (2.16) 
In the particular case mentioned above, N = 161 = 7 * 23; only the two primes 

q = 7 and q = 23 play a role, and ,B = 1 for each. Thus m* = 24, equal to the 
value we found for MN. Numerical results for mN and m* indicate that the 
inequality (2.16) is satisfied as an equality for most values of N < 106. 

We call an integer N "primitive" if mN = m*. A primitive N is one whose 
period mN achieves the upper bound, m*. Thus, 161 is primitive. To our surprise 
we found that the great majority of small N are primitive. The first non-primitive 
N is 29, with mN = 7, m* = 14. We looked at three stretches of 100 values of N 
and found: 

1 < N < 100, 96 are primitive, 

901 < N < 1000, 84 are primitive, 

999901 < N < 1000000, 82 are primitive. 

So far as they go, these numbers suggest that the fraction of primitive N is 
tending to a limit substantially greater than 0.5 as N -> oo. However, we conjecture 
that the opposite is true. 

Conjecture. The fraction of primitive integers not exceeding N has the asymptotic 
behavior 

K 
F(N) logloglog N (2.17) 

as N -4 oo, where 

K log(10/3) 0 (2.18 k log 2 / 
and y is Euler's constant. 

Since log log log 106 = 0.965, our numerical data do not begin to test the validity 
of (2.17). 

The argument leading to (2.17) is probabilistic and makes no claim to be 
rigorous. According to HW Thm. 436 [71, almost all integers not exceeding N have 
about 

y = loglogN (2.19) 

distinct prime factors, which will appear in the definition (2.13) of m*. For N to be 
primitive it is necessary and sufficient that 

A2m*/s # 1 (mod N), (2.20) 

for every prime s dividing 2m*. Now the matrix 

B = A2m*/s (2.21) 

satisfies the congruence 
Bs 1 (mod N). (2.22) 
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We wish to estimate the probability that B # 1 (mod N). If N is a p-prime, 
then s must be a divisor of (N - 1) and the congruence (2.22) has exactly s roots. 
We assume that each of the roots has equal probability s-1 of being (2.21). Then 
the probability that (2.20) holds is 

1 - s-1. (2.23) 

If N is a q-prime, then s must be a divisor of 2(q + 1) and again the 
congruence (2.22) has s roots in the field generated by A (mod N). If s is an odd 
prime, the estimate (2.23) holds as before. But for s = 2, we know from Theorem 3 
that B -1 (mod N) and therefore (2.20) holds with probability 1. 

When N is composite, we assume that the probabilities for (2.20) to hold are 
independent for all primes s dividing 2m*. The probability for N to be primitive is 
then 

F(N) = (1 - 1(1 - Q)) 11 (1 - s'dS)' (2.24) 
s>2 

where ds is the probability that the odd prime s divides 2m*, and Q is the 
probability that the highest power of 2 in the LCM (2.13) belongs to one of the 
terms 2(q + 1). Since each s has roughly y chances to divide one of the factors 
appearing in (2.13), 

ds= 1- (1- s-1) . (2.25) 

To estimate Q, we suppose that each term (p - 1) or (q + 1) appearing in 
(2.13) is divisible by 2k with probability 2-k, k = 1,2,3...... For large N, the 
number of p-primes and q-primes will both be approximately 

M = 2y. (2.26) 

The probability that k1 is the highest power of 2 dividing any (p - 1) is r(k1), 
and the probability that k2 is the highest power of 2 dividing any (q + 1) is r(k2), 
where 

r(k) = (1 - 2-k) - (1 - 21-k) M. (2.27) 
Q is the probability that 

1 + k22 k1. (2.28) 

Thus 

Q= ,i r(k2)r(kl) 
1+k2?kl 

= E ((1 - 2 k)M - (1 - 21-k) M)(l 2-1-k)M (2.29) 
k 

For large M we may replace the sum over k by an integral over a continuous 
variable u given by 

e u = 1 - 2-k (2.30) 

Then (2.29) becomes in the large-M limit 

00 Q = (log 2) | (u-1)-(e -(312)Mu - e -(512)Mu ) du 

= (log 5/log 2), (2.31) 
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and (2.24) becomes 
10 

F(N) l(og - log2 H(1 -s ds), (2.32) 

with the product extending over all primes s. A more exact analysis of the sum 
(2.29) shows that Q contains also an extravagantly small oscillating term 

E Akcos(2wrk(log2) 1(logloglog N) + 3k), (2.33) 
k=1 

with amplitude 

Ak exp(-r2(log2) k) 10-6k (2.34) 
which we shall neglect. 

We return to (2.32) with ds given by (2.25). The factors in the product can be 
crudely approximated by 

d0=(1-s-1) fors<y, 
d5=1 fors>y. (2.35) 

The error in (2.35) is small when s is either small or large compared with y. The 
maximum error is of order y-1 for primes s in the neighborhood of y. The 
number of such primes is of order 

(y/(log y)). (2.36) 
Therefore, the fractional error introduced by (2.35) into the product (2.32) is of 

order (log y) 1. A more careful analysis shows that the leading term in the error is 
a factor 

1 - y(log y), (2.37) 
where y is Euler's constant. Neglecting this factor, we find from (2.32) and (2.35) 

F(N) (log lo /log 2) H (1 - s-1). (2.38) 
s<y 

Finally, HW Thm. 430 [7] (Mertens's Theorem) says 

H(1 _ S_1) _ (2.39) 

and this with (2.18), (2.19), and (2.38) gives (2.17). 
From (2.13) and (2.16) one may derive a simpler upper bound for MN. 

Theorem 3a. 
MN < 3N. (2.40) 

Moreover, (2.40) holds with equality if and only if 
N = 2 - 5. (2.41) 

For all N except for (2.41) we have 
MN < 2N, (2.42) 

with equality only for 
N= 5', N= 6 * 5y. (2.43) 

For all N except for (2.41) and (2.43) we have 
12 

MN < -yN. (2.44) 
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We could find smaller bounds with larger lists of exceptions, but beyond (2.44) it 
seems unprofitable to go. 

Proof of (2.40)-(2.44). Consider the ratio 

R = (m*/N) > (mN/N), (2.45) 

with N given by (2.12) and m* by (2.13). The definition of an LCM gives 

2R < (1 (1 p-'))( 11 [2(l + q1)]) * 4 * 3 * 2-k (2.46) 
PIN qlN 

where the factor 4 appears if y ? 1, the factor 3 appears if a ? 1, and k is the 
number of powers of 2 that appear redundantly in the various terms of (2.13). We 
wish to choose N to make R as large as possible. By (2.46), R will be increased by 
dropping all the p-primes from N. Since each q-prime gives a term in (2.13) 
divisible by 4, R will be increased by dropping all of the q-primes except one, and 
by dropping all except one power of 2. We are left with only the following simple 
choices for N giving possibly maximum values for R, 

N = 51, P * 30, 5 7, 2 -5, 6 -5, 2 * 5y * 7, (2.47) 

giving respectively 
R = 2, 4/3, 8/7, 3, 2, 12/7. (2.48) 

This proves the inequalities (2.40), (2.42), (2.44) and proves that the cases of 
equality are at most (2.41) and (2.43). It remains to prove that equality holds, i.e., 
mN = m , in the cases (2.41), (2.43). 

The Lucas numbers Vk are related to the Fibonacci numbers by 

Vk = Uk-1 + Uk+1. (2.49) 
By (1.7) and (1.11), the matrix A generates Fibonacci and Lucas numbers by 

A2k + A-2k = V2k (2.50) 

A2k - A-2k = U2k V*5 (2.51) 

where vd [in this section] stands for the matrix 

-=A +A-=' ( 2 (2.52) 

whose square is 5. Now (2.50) and (2.51) give 

V4k =5 2k +2 (2.53) 

Ulok = U2k(1 + V4k + V8k) = 5 * U2,(1 + U2k + U4k). (2.54) 

(2.54) implies 

U1ok 0 (mod 5), (2.55) 

U50k/UlOk 5 (mod 125). (2.56) 

Thus U50k is divisible by exactly one more power of 5 thanU 1Ok. Now Theorem 3 
with (2.51) shows that u2k is periodic (mod 5) with period 10, so that 

U2k 0 (mod5) for k 0 (mod5). (2.57) 

This with (2.54) implies 

UlOk # 0 (mod 25) for k W 0 (mod 5). (2.58) 
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Together (2.55), (2.56), (2.57), and (2.58) imply 

U2k 0 (mod5y) if andonlyif k 0 (mod5y). (2.59) 

This means that for any N divisible by 5y, mN is also divisible by 5y. 
Consider in particular N = 2 * 5y, which has mN dividing m* = 6 * 5y. We have 

proved that mN is divisible by 5y. Since N is divisible by 5 and by Theorem 3 

A10 = -1 (mod 5), (2.60) 

mN must also be divisible by 2. Since N is even, mN must be divisible by 3. 
Therefore mN = m* and (2.40) holds with equality. The same argument shows that 
(2.42) holds with equality for N given by (2.43). 

3. LOWER BOUNDS FOR THE PERIOD AND EXPLICIT VALUES FOR 
PARTICULAR CASES. 

Theorem 4. Both u4n 0 (mod N) and u4n-1 1 (mod N) if and only if 

2n=0 (mod N). (3.1) 

Proof: The identities 

U4n = U2nV2n, (3.2) 

U4n- I- 1 = U2nV2n 1- (3.3) 

imply the "if" part of the theorem immediately. The "only if" is equivalent to the 
statement that (v2n-1, v2n) are coprime, which is contained in HW Thm. 179 [7]. 

Theorem 5. For N ? 2 let n be the smallest positive integer such that U2n 0 
(mod N). Then either mN = n or mN = 2n. 

Proof: By Theorem 4, n is the smallest integer such that 

A 4n _1 (mod N), (3.4) 
while mN is the smallest such that 

A2mN 1 (mod N). (3.5) 
Integers satisfying (3.4) are multiples of n, and integers satisfying (3.5) are 
multiples of MN. Therefore, mN is a multiple of n, and 2n is a multiple of MN. 
The conclusion follows. 

Theorem 6. Given N = u2n with n = 2, 3, .. .; there does not exist an N' > N with 
even period, mN' < 2n. 

We give the proof of Theorem 7; the proof of Theorem 6 is similar. 

Theorem 7. Given N = V2n-1 with n = 2, 3, .. .; there does not exist an N' > N with 
odd period, mN' < 2n - 1. 

Proof: Assume mN' = 2n' - 1 < 2n - 1 so that 

U4n'2 =0 (mod N') (3.6) 
and 

u4n'-3 _1 (mod N'). (3.7) 
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Then from Theorem 4 

u2n,_1 0 (mod N'). (3.8) 

But if 2n' - 1 < 2n - 1, then 

U2n_ 1 < U2n-1 < U2n-1 + 2U2n-2 
= U2n + U2n-2 

= N < N'. (3.9) 

That contradicts (3.8) and completes the proof of the Theorem. 

Corollary. For N' > V2n-l with n = 2,3,...; mN > 2n. 

Proof: Since u2n + u2n-2 > u2n, the condition N' > u2n + u2n-2 implies the con- 
dition N' > u2n. By Theorem 6 there are no even periods mN, < 2n, and by 
Theorem 7 there are no odd periods mN' < 2n - 1. That proves the corollary. 

The corollary provides a "staircase" lower bound for mN as a function of N. 
This bound may be expressed in the following way. 

Define 

N(n) = un for n even 

= vn for n odd (3.10) 
and let 

A+= (1 + V5)/2. (3.11) 

Then for n even and N > N(n), any even period 

mNN> n > [log(N(n) )] /log A+ (3.12) 

and for n odd and N > N(n), any odd period 

mN> n > [log N(n)] /log A+. (3.13) 

These results may be summarized in 

Theorem 8. For any integer N, 

MN > [log(NrII)] /log A + if mNis even, (3.14) 

MN> [log N/log A+] if MN is odd. (3.15) 

In the context of chaos, others [10] have displayed an approximate recurrence of 
a digitized image of an appropriately selected subject; viz., Henri Poincare. The 
importance of background fluctuations is pointed out in that article. 

Theorem 9. 

(a) ForN = U2n, mN = 2n, (n > 1). (3.16) 
(b) ForN =U2n-1, MN= 4n-2, (n > 2). (3.17) 
(c) ForN = v2i mN= 4n. (3.18) 
(d) ForN= V2n-1 MN= 2n - 1. (3.19) 
(e) ForN= V2n-1, mN= 6n. (3.20) 
(f) ForN= v2n +1, imN=3n. (3.21) 

[Note, e.g., N = 842, 843, 844 yield mN = 42, 28, 21, respectively.] 
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Proof: The proofs of each part are similar so we choose to select a few for detailed 
presentation and sketch the others. For part (a) since u2n- 0 (mod N), we find 
from Theorem 4 that 2n satisfies the conditions defining mN and is therefore a 
multiple of mN. But U2mN1 =1 (mod N) implies U2mN_1 > U2n and 2MN - 1 > 
2n. Therefore, 2n can only be MN. 

Part (c) is proved by using u4n = U2nv2n 0 (mod N) and Theorem 4 to 
establish that 4n is a multiple of MN. From the Corollary following Theorem 7 one 
concludes that mNN> 2n. Consequently, 4n = mN. 

Part (d) is proved by making use of the two identities u4n-2 = u2n-lV2n-1 and 
-4n1 -1 = U2nV2n1NB to show that 2n - 1 is a multiple of mN. But u2mN1 1 

(mod N) implies U2mN_1 > N, where N = V2n-1 > u2n-1 so that 2n - 1 < 2mNN 
A multiple of mN satisfying the latter condition can only be mN itself. Parts (e) 
and (f) are proved by using the identity u6n = u2n(v2n - 1)(v2n + 1) along with 
part (a). The proof of part (b) is a bit more involved. One uses (1.9) to obtain 
U4n2 -- 0 (mod N) and then one uses Theorem 4 to obtain A8n-4 = 1 (mod N) 
so MN divides 4n - 2. But N > V2n-31 so the Corollary following Theorem 7 says 
mN > 2n - 2. The only possibilities are mN = 4n - 2 or 2n - 1. Assume that 
mN = 2n - 1. Then u4n-3 1 (mod u2n-1), but u4n-3 = 1 + u2n-2v2n-1 so 
U2n -2V2n- 1=0 (mod u2n -1). According to HW Thm. 179 [7], uk and uk+ 1 are 
coprime, while Uk and Vk have at most one common factor 2. Thus, the congru- 
ence U2n-2V2n- 10 (mod u2n-1) is possible only if u2n-1 = 1 or 2, n = 1 or 2. 
This explains why (b) fails for n < 2. 
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