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where J(pV,q";R) = 3V, (p;/m)6(q; — R) is the particle current phase
function. Equation (3) is a balance equation which reflects the conservation
of particle number on the microscopic level.

It is interesting to note that the probability density, p(X",t), is often
interpreted in terms of an “ensemble” of systems. This was the view originally
taken by W. Gibbs. Let us consider an ensemble of 7 identical systems (5 very
large). If we look at each system at a given time, it will be represented by a
point in the 6N-dimensional phase space. The distribution of points representing
our ensemble of systems will be proportional to p(X", ¢). That is, the density of
system points in phase space will be given by np(X",?).

6.C. ERGODIC THEORY AND THE FOUNDATIONS OF
STATISTICAL MECHANICS [6-13]

The subject of ergodic theory was primarily the domain of mathematicians until
the advent of modern computers. However, in recent years it has become an
even more important subject of research because of its importance in such
diverse fields as celestial mechanics (stability of the solar system) and
chemistry (stability of isolated excited molecules) and because it asks questions
which lie at the very foundations of statistical mechanics.

As we shall see, the flow of probability in phase space is of a very special
type. There are absolutely no diffusion processes present. Historically, two
types of probability flow have been important in understanding the behaviour of
phase space, namely, ergodic flow and mixing flow. For systems with ergodic
flow, we obtain a unique stationary probability density (a constant on the energy
surface) which characterizes systems with a fixed energy at equilibrium.
However, a system with ergodic flow cannot necessarily reach this equilibrium
state if it does not start out there. For decay to equilibrium, we must have at
least the additional property of mixing. Mixing systems are ergodic (the
converse is not always true, however) and can exhibit random behavior. In
addition, reduced distribution functions can be defined which decay to an
equilibrium state. We give examples of mixing flow in the special topics
Section (S6.D).

Ergodic and mixing behavior for real systems is difficult to establish in
general. It has been done only for a few model systems. However, there is a
large class of conservative systems, the anharmonic oscillators, which are of great
importance in mechanics, chemistry, and the theory of solids. These systems are
neither ergodic nor mixing but exhibit behavior reminiscent of both in local
regions of their phase space. They have been studied extensively with computers
in recent years and give great insight into the behavior of flows in phase
space and the possible mechanism behind the irreversibility we observe in
nature. We briefly discuss such systems in the special topics in Section (S6.E).
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Let us now define ergodic flow. Consider a Hamiltonian system with 3N
degrees of freedom with Hamiltonian H(pY,q") = E. If we relabel the
momentum coordinates SO p; =Ppyx1, P2 =Py1, P3 =Dzl> P4 =Px2s--
psv =p;n (with similar relabeling for the position coordinates), then
Hamilton’s equations can be written

G _ dew _  _ __dpn
(OH /0p1) (OH/0Op3w) (OH/0q:1)
(6.33)
— __d.g.L — dt.
(OH/0qsn)

Equation (6.33) provides us with 6N — 1 equations between phase space
coordinates which, when solved, give us 6N — 1 constants, or integrals, of the
motion,

filpr, ..., 41, - q3n) = G, (6.34)

where i = 1,2,...,6N — 1 and C; is a constant. However, these integrals of the
motion can be divided into two kinds: isolating and nonisolating. Isolating
integrals define a whole surface in the phase space and are important in ergodic
theory, while nonisolating integrals do not define a surface and are unimportant
[6, 14]. One of the main problems of ergodic theory is to determine how many
isolating integrals a given system has. An example of an isolating integral is the
total energy, H(p",q") = E. For N particles in a box, it is the only isolating
integral (at least for hard spheres).

Let us consider a system for which the only isolating integral of the motion
is the total energy and assume that the system has total energy, E. Then
trajectories in I' space (the 6N-dimensional phase space) which have
energy, E, will be restricted to the energy surface, Sg. The energy surface,
Sg, is a (6N — 1)-dimensional “surface” in phase space which exists
because of the global integral of the motion, H(p,...,psn,q1,---,q3n) = E.
The flow of state points on the energy surface is defined to be ergodic
if almost all points, X(p1,...,p3n,q1,.--,q93n), on the surface move in
such a way that they pass through every small finite neighborhood, Rg, on
the energy surface. Or, in other words, each point samples small neighbor-
hoods over the entire surface during the course of its motion (a given
point, X(py,...,p3n,q1,-..,q3y) cannot pass through every point on the
surface, because a line which cannot intersect itself cannot fill a surface of
two or more dimensions). Note that not all points need sample the surface,
only “almost all.” We can exclude a set of measure zero from this
requirement.

A criterion for determining if a system is ergodic was established by
Birkhoff [15] and is called the ergodic theorem. Let us consider an integrable
phase function f(XV) of the state point XV. We may define a phase average of
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the function f(X") on the energy surface by the equation

1 1
f =——J f(XMds =—J S(HY (XM) — EYf(XM)dXN, (635
where dSg is an area element of the energy surface which is invariant (does not
change size) during the evolution of the system and ) (E) is the area of the
energy surface and is defined as

>(E) = |

dSg = J §(HY(XN) — E)dXV (6.36)
Sk r

(we are using the notation of Section 6.B). We may define a time average of the
function f(X") by the equation

o+T

(e =fim 7 [ 70" () (637)

o

for all trajectories for which the time average exists. Birkhoff showed that the
time average in Eq. (6.37) exists for all integrable phase functions of physical
interest (that is, for smooth functions).

It terms of averages, the ergodic theorem may be stated as follows: A system
is ergodic if for all phase functions, f(XN): (i) the time average, (f)y, exists for
almost all XN (all but a set of measure zero), and (ii) when it exists it is equal to
the phase average, (f)r = (f)s.

To find the form of the invariant area element, dSg, let us first write an
expression for the volume of phase space, {2(E), with energy less than E—that
is, the region of phase space for which 0 < HY¥(X") < E. We shall assume that
the phase space can be divided into layers, each with different energy, and that
the layers can be arranged in the order of increasing energy. (This is possible for
all systems that we will consider.) The volume, 2(E), can then be written

Q(E) = J axv = dAydny,  (638)

O<HN(XM)<E JO<HN(X”)<E

where dAy is an area element on a surface of constant energy and dny is normal
to that surface. Since VxH" is a vector perpendicular to the surface
HY(XN) =constant, we can write dH" = |VxH"|dny and the volume becomes

Q(E) = JO dH > “(HY), (6.39)

where
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is a function of H" and is an invariant measure of the surface area for a given
value of HN. If we take the derivative of Q(E), we find

dQ E) => (E) L __ s (6.41)

|VxHN | _g

The area, Y (E), is called the structure function. By the same argument, if we
wish to take the average value of a function f(X") over the surface, we can

write

1 dAg 1 d

_ XV _ _J xM)ax®.
s >_(E) Jsgf( )|VXHN lov—g D_(E)dE 0<HN(X”)<Ef( )
(6.42)
Thus, the differential
dAg
dSg = 6.43
y |VXHN|HN=E ( )

is the invariant surface area element.

' W EXERCISE 6.3. Compute the structure function for a gas of N
noninteracting particles in a box of volume V. Assume that the system has a
total energy E.

=N Pi_g (1)

i
|
i Answer: The Hamiltonian for the gas is
|
|
|
|
; The volume of phase space with energy less than E is
\
l
\

Q(E):J dql---J quJdpl---Jde for p1+ +pN<2mE
‘ Vv Vv
| (2)

5 This can be written Q(E) = VN(),, where

Qp=JdP1“'deN9(R2—P%_‘“—Plzv)- (3)

' is the volume enclosed in momentum space and R?2 = 2mkE. The volume in
' momentum space, §2,, has the form €2, = A3yR3N. Let us find Asy. This can
. be done by a trick. First do the mtegral

' ;“ 00

= Sy 3N
\ j_ dpl,x .. J dp3N,z eXp[—(pix_}_. . .+p§N,z)] —_ (J‘ dpe_pz) _ N2

| (4)
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Next note that (d€,/dE) = [dp,--- [dpy6(R* — p7 — - -- — p§) so that
L dR— e o =J dpu---J dpsnzexpl=(pl, + - +Piw,)]
e T (5)
= 3NA3NJ dRR3N-1¢~F* — %NA;;NI‘ GN)
0

where I'(x) is the gamma function. If we equate Eq. (4) to Eq. (5), we find

27T3N/2
Azy = INTGN/2) (6)

Thus, the volume of the region of phase space with energy less than E is

2VNTN2RN YN (2mmE)*N/
3NT(3N/2) T(3N/2+1)°

The structure function, Y (E), equals (dQ)(E)/dE).

Q(E) = (7)

If a system is ergodic, the fraction of time that its state, XV (p", ¢V), spends
in a given region Rg of the energy surface will be equal to the fraction of the
surface Sg occupied by Rg. Let us consider a function ¢(Rg) such' that
#(Rg) = 1 when X" is in R and ¢(Rg) = O otherwise. Then it is easy to see
that, for an ergodic system,

. TRg _ Z(RE)
ML = SYE) (6.44)

where g, is the time the trajectory spends in Rg and ) (Rg) is the area
occupied by Rg.

A system can exhibit ergodic flow on the energy surface only if there are
no other isolating integrals of the motion which prevent trajectories from
moving freely on the energy surface. If no other isolating integrals exist, the
system is said to be metrically transitive (trajectories move freely on the energy
surface). If a system is ergodic, it will spend equal times in equal areas of the
energy surface. If we perform measurements to decide where on the surface
the system point is, we should find that result. We can also ask for the
probability of finding the system in a given region Rz of the energy surface.
Since we have nothing to distinguish one region from another, the best
choice we can make is to assume that the probability P(Rg) of finding
the system in Rg is equal to the fraction of the energy surface occupied by
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Rg. ThllS,

| ase - o (6.45)

From Eq. (6.45) it is a simple matter to write down a normalized probability
density for the energy surface, namely,

P(Rg) =

1
2.(E)

Equation (6.46) is called the fundamental distribution law by Khintchine and
called the microcanonical ensemble by Gibbs. Since it is a function only of the
energy, it is a stationary state of the Liouville equation (6.27). It says that all
states on the energy surface are equally probable. Equation (6.46) forms the
foundation upon which all of equilibrium and most of nonequilibrium statistical
mechanics are built. Its importance cannot be overemphasized. In Exercise 6.2,
we give a simple example of ergodic flow.

In this section, we have discussed ergodic theory for classical systems.
However, it is also possible to formulate analogous definitions for quantum
systems. In fact, the criterion is rather sample. A quantum system is ergodic if
and only if the system has a nondegenerate energy spectrum [16]. This means,
of course, that there are no other observables which commute with the
Hamiltonian.

p(XN, Sg) = (6.46)

B EXERCISE 6.4. Consider a dynamical flow on the two-dimensional unit
square, 0<p<1 and 0<g<1, given by the equations of motion,
(dp/dt) = o and (dg/dt) = 1. Assume that the system has periodic
boundary conditions. (a) Show that this flow is ergodic. (b) If the initial
probability density at time, t =0, is p(p,q,0), compute the probability
density at time, ¢.

Answer:

(a) The equations of motion are easily solved to give
p(t)=po+at and q(t) =qo+1, (1)

where po and g are the initial momentum and position, respectively.
If we eliminate the time f, we obtain the phase space trajectory,
p = po + a(q — qo), on the square surface. If « is a rational number,
| o = (m/n) (m and n integers), then the trajectory will be periodic and
repeat itself after a period, n. If « is irrational, the trajectory will be
| dense on the unit square (but will not fill it)). A trajectory is shown in
' the accompanying figure.

|
|
|
|
|
|
|
|
|
|
|
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=V

When « is irrational, the system is ergodic. Let us show this
explicitly. Since the phase space is periodic, any integrable function,
f(p,q), can be expanded in a Fourier series,

@)= 3 3 A, )

m=—00 n=—00

We wish to show that the time average and the phase average of the
function, f(p, q), are equal for « irrational. The time average is given

by
to+T

.1 s 2mi[m(qo+1)+n(po-+at)]
(f)—Tli{go‘T'J de D, D Anne

fo m=—00 n=—00

LN 2nim{gotto) F(po-hato)]
= Aoo + lim — D D Amne

m=—00 n=—00

2mi(m+-n)T __
X (e 1) : (3)

27i(m + an)

The primes on the summations indicate that the values m = 0 and
n = 0 are excluded from the summation. For irrational values of «,
the denominator can never equal zero. Therefore

(f)r =Aop- (4)
Similarly, we can show that
1,1
(=] | dpdaf(p.0) = oo 8
0 Jo

Hence, the system is ergodic (note that dpdg = dpydgy, so area is
preserved).
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(b) The probability density satisfies periodic boundary conditions, so we
can write

g = 3 S pualiiemmacie, (©)

m=—=—00 n=—00

It is easy to show that pa(f) = pm,n(0)e™ o) Next note that
[, dge*™™ = §,,0 and Y o €*™™ = §(q). Using these relations,
we find

p(p,q,t) = p(p + at,q +1,0). (7

From Eq. (7) we see that ergodicity is not sufficient to cause a system
which initially has a nonstationary distribution (localized on the
energy surface) to approach a stationary state (spread throughout the
energy surface). The probability density in Eq. (7) does not change
shape with time, but simply wanders intact through the phase
space. In order to approach a stationary state the system must be
‘mixing’. Conditions for mixing flow are discussed in special topics
L Section S6.D.

6.D. THE QUANTUM PROBABILITY DENSITY
OPERATOR

For quantum systems, the phase space coordinates do not commute so we
cannot introduce a probability density function directly on the phase space.
Because of the noncommutivity of phase space coordinates, we cannot
simultaneously know the values of all the phase space coordinates. Instead we
will introduce a probability density operator or density operator as it is
commonly called. The density operator contains all possible information about
the state of the quantum system. If we wish we can use it to construct the
Wigner distribution, which is a function that reduces to the classical probability
density in the limit where Planck’s constant goes to zero.

The probability density operator 5(¢) (we shall call it the density operator),
contains all possible information about the state of the quantum system. It is a
positive definite Hermitian operator. Given that we know the density operator,
A(t), for a system, we can use it to obtain the expectation value of any
observable O at time ¢. The expectation value is defined as

(0(1)) = Tr Op(2), (6.47)
where Tr denotes the trace. The density operator is normalized so that

Tr p(z) = 1. (6.48)
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In Egs. (6.47) and (6.48), the trace can be evaluated using any convenient
complete set of states. For example, we could use the eigenstates of the
operator, 0, or any other Hermitian operator, A, which may or may not
commute with O. We will let {|o;)} and {|a;)} denote the complete orthonormal
sets of eigenstates of the operators, O and A, _respectively, and let {o;} and {q;}
be the corresponding sets of eigenvalues (O|o;) = o;]0;) and (A]a;) = aj|a;)).
For simplicity we use Dirac notation (cf. Appendix B). The trace can be
evaluated in either of these basis. Thus, we can write

(0(r)) = Zo,(0,|p(t |0:) ZZ a,lOla] (a|p(t) as), (6.49)

where o; = (0;|0|o;) and we have used the completeness relation,

3, @i (ai| = 1, where 1 is the unit operator. The diagonal matrix element,
(0i|p(t)|0;)({ai|p(t)|a:)), gives the probability to find the system in the state
|0;)(|a;)), at time z. The set of numbers, (aj|p(t)|a;), forms a matrix
representation of the density operator (called the density matrix) with respect
to the basis states, {|a;)}. The density matrix is a positive definite Hermitian
matrix. The off-diagonal matrix element, (aj|p(t)|a;) for i #j, cannot be
interpreted as a probability.

The introduction of a density operator allows a more general description of a
quantum system than does the Schrédinger equation. As we shall see, it can also
be used to describe the equilibrium and near equilibrium states of a many-body
system. To see this it is useful to distinguish between ‘“‘pure states” and ‘““mixed
states.” Consider a quantum system in the state |(¢)) which evolves according
to the Schrédinger equation,

o)
=S = (o), (6.50)

where H is the Hamiltonian operator, and % is Planck’s constant. The density
operator which describes this ‘‘pure state” is simply

p) = [P())((®)]- (6:51)

A “mixed state” is an incoherent mixture of states |1;(t)):

ZP:W: ) (@i(e)), (652)

where p; is the probability to be in the state |1:(t)), and the states |¢);(¢)) each
satisfy the Schrodinger equation. Equilibrium and near-equilibrium states O
many-body systems are of this type.
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Using the Schrodinger equation, the equation of motion of the density
operator is easily found to be

220 _ L o) = oo, (653)

where [H p(t)] is the commutator of the Hamiltonian, H with 5(t), and the
operator L = [H] is proport10na1 to the commutator of A with everything on
its right. The operator L is the quantum version of the Liouville operator and
is a Hermitian operator. Equation (6.53) is called the Liouville equation
and gives the evolution of the state of the system (in the Schrodinger picture).
If the density operator is known at time ¢ =0, then its value at time ? is
given by

ﬁ(t) — e_ii"ﬁ(O) — e—(i/h)f{tﬁ(o)e-f-(i/ﬁ)f{t (654)

If we substitute Eq. (6.54) into Eq. (6.47) and use the invariance of the trace
under cyclic rotation of operators, then Eq. (6.47) takes the form

(0(1)) = Tr 0(1)5(0), (6.55)
where
O(t) = e*iMHO(0)e= /M, (6.56)
Thus the operator, O, obeys a different equation of motion,

a0(t) 1

~i=2 0 = [, 0() = LO(), (6:57)

which is different from that of the density matrix. Equation (6.57) gives the
evolution of the system in the “Heisenberg” picture.

It is often convenient to expand the density operator in terms of a complete
orthonormal set of eigenstates {|E;)} of the Hamiltonian, H, where E; is the
eigenvalue corresponding to eigenstate |E;). If we note the completeness
relation ¥, |E;)(E;| = 1, then Eq. (6.54) takes the form

ZZ 0)|Ep)e~ /D EEX|E) (Ey|. (6.58)

From Eq. (6.58), we see that a stationary state, ps, occurs when all off-diagonal
matrix elements (E;|5(0)|E;) with i % j, of 5(0) vanish of E; # E;. Thus, for a
state with no degenerate energy levels, the stationary state, p;, must be
diagonal in the energy basis. This can only happen if p, is a function of the
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Hamiltonian,

b = f(H). (6.59)
For a system with degenerate energy levels, one may still diagonalize both

and H simultaniously by introducing additional invariants of the motion, 1
which commute with each other and with A. Thus, in general, a stationary state

will be a function of all mutually commuting operators, H,1i,. .. ,1,,
ps=f(H 1,....1,). (6.60)

For systems which approach thermodynamic equilibrium, the stationary state
may be an equilibrium state.

f

. EXERCISE 6.5. Consider a harmonic oscillator with Hamiltonian,

= (1/2m)(p*+3mw?s?). Assume that at time ¢ = 0 the oscillator is a state
descnbed by the density operator, p(0) = fiv/ab(e=% =" 4 ¢=b% o~a¥)
where a and b are constants with the dimensions of inverse length squared
and inverse momentum squared, respectively. (a) Compute the probability to
find the particle in the interval x — x + dx at time ¢ = 0. (b) Write the
Liouville equation in the position basis. (c) Compute the probability to find
the particle in the interval x — x + dx at time ¢.

Answer:

(a) The probability to find the particle in the interval x — x + dx at
time t=0 is (x|p(0)|x)dx, where |x) is an eigenstate of the
position operator &. We will use the notation p,/ ,(0) = (x’|(0)|x).
Then

prx(0) = ivab(e™" + &™) (¥ |e~%|x)

\/‘E (eaxﬂ + e—axz) Joo dpe—bpzei(p/h)(#—x)

B oo (1)

a X — x)?
= % \/_;r:(e“""2 + e"“z) exp (— &) 4bh2) ) )

where we have used the completeness relation, [° dp|p){p| = 1, for
momentum eigenstates and the conventions of Appendlx B. The

probability to find the particle in the interval x — x + dx is py.(0)dXx,

where
@) = [2 e )
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(b) The Liouville equation in the position basis is

L Opex(®) 1 [® i N
& p’St( = EL,O " (¢ [P} pera(t) — a0 (1) (¢ 57 )
1
o (x'2 = x%)por, (1)
_ 1 > 2 i(p/R) (X —x")
= Gmh Lo dp Lod’/ p'(e P (1)

. , 1
_ pxl,x”(t)et(p/h)(x’ —x)) + imw2(x12 . xz)Px',x(t)

+lmw2(X'2—x2)Pr,x(t)- 3)

If we now assume that p,: ,(f) — 0 as ¥’ — oo or x — oo, then we
can integrate by parts in Eq. (3) and obtain

2 /52 2,
ihapx ,x(t) h (8 Px,x(t ) _3 Px ,x(t)) +1

9t  2m 2 ) 2mw2(xr2 _ xz)Px',x(l‘)-

(4)

(¢) To find p, (z), let us first solve the Liouville equatlon in the basis of
eigenstates of the Hamiltonian, H = (1/2m)p? + imw?%2. From
Exercise 5.8, we see that the Hamiltonian has eigenvalues
E, = hw(n+%) and eigenstates |n), (H|n) = E,|n)), which in the
position basis are

=\l (5o

where H,(/(mw/h)x) is a Hermite polynomial. The Liouville
equation in the basis of eigenstates |n) is

ith"—(ﬁ)’t"—@ = hw(n' — n)pn A(2), (6) |

where p,: (t) = (n’|p(t)|n). The solution to Eq. (6) is
Pn,n(2) = e_iw(nl_n)tpn’,n(o)- (7)
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Let us now note that p,+ ,(0) = [* dx{, [* dxo(n'|x, )Pxtx(0) (xo|n).
Then the density matrix, p, »(¢), can be wntten

o0 00 0o
pxt) =323 | a
n'=0n=0 Y~

- (8)
"J dxo ¥ [n') (nfx) (o lm) (') g, (0).

-0

If we use the initial condition in part (a), the probability density,
pxx(t), can be written

Px,x(t) = f 0
n'=0 n—O

x j dxo (x| (n]x) <xo|n><n'|)4,>e-"“<""">’ ©)

X (€7 + e~ )exp( (11_04bh2—0)>'

Let us now use Eq. (5) and note the identity in Eq. (10) of Exercise
5.8. With this we can write

i(xoln)(nlx)e“"“" = (;r__m;’) 1/2 e/

n=0

x exp(—Z2f ()(F + 5 — 2x0xe) ), (10)

where f(f) = ie”™/2sin(wt). If we use Eq. (10) to perform the
summations in Eq. (9), then we are left integrals over x; and xo which
can be performed explicitly. After considerable algebra, we find

_ Ja L 70)
px,X(t) - WRC{\/Eme }1 (11)

where Re denotes the real part and

B(r) = cos*(wt) + sin®(wt) + i %hcos(wt)sin(wt). (12)

a
bm?2u?

S

B EXERCISE 6.6. An ensemble of silver atoms (each with spin ) 1s
prepared so that 60% of the atoms are in the §, = + eigenstate of S, and
40% of the atoms are in the S, = — 2 elgenstate of S, (S and S are the x and
z components of the spin angular momentum operator). (a) Compute the
density matrix at time ¢ = 0 in the basis of eigenstates of S,. (b) Assume that
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the silver atoms sit in a magnetic field, B = By, and have a magnetic
Hamiltonian, A = uS - B, where y is the magnetic moment of a silver atom.
Compute the density matrix at time ¢ (in the basis of eigenstates of S ). (C)
Compute (S,(¢)) at time ¢ = 0 and at time ¢.

Answer:

(a) Let |iz) denote the eigenstates of S(k =x,y,z) with eigenvalues
+(%/2) so (Si|k+) = +(%/2)|k+)). The density operator at time ¢ = 0
is the mixed state
. 6 4
p(0) = Jgler)(ze| + g be-) x|, (1)

Now note that the matrix representation of the components S,,, Sy, and
S in the basis of eigenstates of S are

{0 1 h(0 —i k{1 O
Sx—'z—(l 0), Sy—i(l 0), and SZ_E(O _1)
(2)

The eigenstates of S, and §,, in the basis of eigenstates of S, are

() -(L) = (550)-5 ().

respectively. The eigenstates of S‘Z in the basis of eigenstates of S,
are

‘ (@)= ) = (@5)=0) @

Using these results we find the initial density matrix in the |z.)

basis,
p<o>=( . ) (5)
5 5

(b) The Hamiltonian is H =1uhBo(|y;+)(y+| — |y-){y-|) (this is its
| spectral decomposition). If we let py,, . = (y+|p|y+), then the
! Liouville equation for various matrix elements of the density matrix
in basis |y.) is given by

3py++(t) apy+ (1) .Opy-+(1)
o =0 g = HBop- (1), i

= —pBopy-+(t) and i w =0,

(TN
-

(6)
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Now note that the initial density matrix in the basis |y.) is given by

(4
PO =2 § ) )

Using Eq. (7), we can solve Egs. (6) and write the density matrix at
time ¢ in the basis |y.). We find

(8)

We now can transform Eq. (8) to the basis |z.) to obtain

o) = 2+ & cos(uBot) —{—5 sin(uBot)  75sin(uBot)— cos(uBot)
& sin(uBot) —1cos(uBot) 31— cos(uBot)—1sin(uBot))
9)
(¢) The average z-component of spin angular momentum at time, ¢t = 0
is

. Ao (1 0 : -3 3

0 -1/\-3 3

The average z component of spin angular momentum at time ¢ is

(8,(2)) = ——hcos(uBot) +1 < sin(uBo). (1)

» SPECIAL TOPICS

» S6.A. Reduced Probability Densities and the BBGKY
Hierarchy [2, 5, 17]

The N-particle probability density, p(X", ), contains much more information
than we would ever need or want. Most quantities we measure experimentally
can be expressed in terms of one-body or two-body phase functions. One-body
phase functions are usually written in the form

Oy (X") = D 0(X), (6.61)
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and two-body phase functions are written in the form

N(N-1)/2
oY) = > o(X,X)), (6.62)

i<j

An example of a one-body phase function is the kinetic energy, Efv 1P?/2m, of
an N-particle system An example of a two-body phase function is the potential
energy, Efi(JN V(|q, q;|), of an N-particle system. To find the expectation
value of a one-body phase function, we only need to know the one-body
reduced probability density. Similarly, to find the expectation value of a two-
body phase function, we only need to know the two-body reduced probability
density.
The one-body reduced probability density is given by

pl(Xl,t) = JJddeXN p(Xl,...,XN,t), (663)

where p(Xi,...,Xn,t) = p(X",t). The s-body reduced probability density is
given by

os(Xi, ... X 1) = j---JdXsH...dXN o(Xi,... Xm1).  (6.64)
If the probability density, p(Xi,...,Xy,?), is known at time ¢, then the
expectation value of the one-body phase function at time ¢ is given by
N

(O (1)) = ZJ. y del . dXy OX)p(XV, 1) = NJdXIO(Xl,t)pl (X1, 1).

i=1

(6.65)

Similarly, the expectation value of the two-body phase function at time ¢ is

N(N-1)/2
Op =3 j JXm...dXNO(X,-,Xj)p(XN,t)

i< (6.66)
=IV—(I—VZ_—I)JdeldX20(X1,X2,t)pz(xl,XZ,t).

In Egs. (6.65) and (6.66), we have assumed that the probability density
is symmetric under interchange of particle labels if the Hamiltonian is
symmetric.

The equation of motion of ps(Xi,...,X;,?) can be obtained from the
Liouville equation. It is convenient to first introduce another quantity,
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Fi(Xy,...,X;,1), defined as
Fs(Xl,. .. ,Xs,t) = VSJ-- 'des+1 ...dXNp(Xl, ce ,XN,I), (667)

and

Fy(Xy,...,Xn,t) = V¥p(Xy,..., Xy, 1). (6.68)

Let us assume that the evolution of the system is governed by a Hamiltonian of
the form

N(N-1)/2

HN(XN)—ZP' + Z o(la; — ql), (6.69)

i<j

where ¢(|q; — q]]) is a two-body spherically symmetric interaction potentlal
between particles i and j. The Liouville operator is

N N(N-1)

I:NZ_"ZZ 5(.1:+1 Z (—),,, (6.70)

=1 i<j

where

0d;j 8+8¢,-,- 0

. 6.71
5, Op; " 29, p, (6.71)

& -

and ¢; = ¢(|q; — q;|). If we integrate the Liouville equation, (6.27), over
Xs+1,..., Xy and multiply by V¥, we obtain

OF
ot

ISF, =VSJ. . .desﬂ o dXy

N
pi 3 A A (6.72)
X{—. Ea—q;-f‘ Z ey"‘ Z @kl}

i<s;s+1<j<N s+1 <k<l

If we assume that p(Xi,...,Xy,?) — 0 for large values of X;, then the first
and third terms on the right-hand side of Egs. (6.72) go to zero. One can see this
by using Gauss’s theorem and changing the volume integration to surface
integration. For a large system the contribution from p(Xi,...,Xy,?) on the
surface goes to zero. The second term on the right-hand side can be written in
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the form

VSJ"'JdXs+1'“dXN Z éijPN(Xl,---axNat)
. i<ss+Hi<j<N
— V(N —s) Zjdxmé,-,m J"'desn e d Xy (X, Xy )
i1

N—5)< N
= ( )Zjdxs+19i,s+1Fs+1(X1, oo, Xop1, 1)
i=1

|4

Equation (6.72) then becomes

an 2 N - J A
+ lLst = ( S) E JdXs+1@i,s+1Fs+1(X1, e ,Xs+1, t)- (6-73)
i=1

ot |%

For a fixed values of s we may take the limit N — oo,V — oo, such that
v = V/N remains constant (this is called the thermodynamic limit) and Eq.
(6.73) becomes

OF
ot

" 1< A
+ lLst = ;Zjdxs+1@i’s+1Fs+1 (Xl, e 1Xs+1, t). (674)
i=1

Equation (6.74) gives a hierarchy of equations of motion for the reduced
probability densities F5(X, ..., Xy,?). It is called the BBGKY hierarchy after
authors Bogoliubov [17], Born and Green [18], Kirkwood [19], and Yvon [20].
The most useful equations in the hierarchy are those for F;(X;,t) and
Fy(X1,Xa,1):

8F1 pl 6F1 _ 1 A
o dex29qu(x1,Xz,t) (6.75)
and
6F2 P 0 P 0 A 1 A A
B T <_r;ll_.3_ql+_r;¢%.3_q2 - 912)F2 = ;de3(913 +023)F3(Xi, X2, X3, 1).
(6.76)

Notice that the equation of motion of F; depends on F,, the equation of motion
for F, depends on F3, and so on. This makes the equations of the hierarchy
impossible to solve unless some way can be found to truncate it. For example, if
we could find some way to write F2(X;,X3,¢) in terms of F;(X;,t) and
Fi(X5,t), then we could in principle solve Eq. (6.75) for the reduced
probability density F;(X;, ). Equation (6.75) is called the kinetic equation.
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» S6.B. Reduced Density Matrices and the Wigner
Distribution [16, 21-25]

For quantum mechanical system, the phase space coordinates of particles do not
commute, and therefore it is impossible to specify simultaneously the position
and momentum of the particles. As a result, it is also not possible to define a
distribution function on the phase space which can be interpreted as a
probability density. However, Wigner [16] was first to show that it is possible to
introduce a function which formally analogous to the classical probability
density and which reduces to it in the classical limit.

Before we introduce the Wigner function, it is useful to introduce the idea of
one- and two-body reduced density matrices. In quantum mechanics, as in
classical mechanics, we generally deal with one-body operators,

N
oy = ZI: o(p;, q;), (6.77)

such as the N-body kinetic energy operator, and we also deal with two-body
operators,

X NN-1)/2
0’(\;-) = Z O(ﬁi, ﬁja(iia qj); (678)
i<y

such as the interaction potential. The trace of a one-body operator, in the
position basis, can be written

(Ouy(8)) =Tr 01(\1)/3(’)
N
- Zjdxl ---dedex; --.de;,<x1,...,xN|a,-|xfl,...,fo)
i=1
X (X, . xy|p()|x1, - - - xN)

ZNdel "'deNde'l(xllbllx'1><x’1,x2,---,lef)(t)lxl,---,xN>

- J dx; j dx, (1|01 [, ) (%, |y () 1),
(6.79)
where O; = O(p;, §;) and

1oy (B)]x1) = dexz : ~-de~(x’1,x2, o wN]BE) X, ., xy) (6.80)

is the one-body reduced density matrix. (We use the notation of Appendix B.)
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The two-body reduced density matrix is defined in an analogous manner. The
trace of a two-body operator in the position basis can be written

(0@ () = Tr O p(r)

N(N-1)/2 A
= Z del . deNde’l .- 'de,N<X1,. .. ,xNIO,-,]-Ix’l,. .. ,x;\,)

i<j

(Koo KB - 3)
=MD [y [any [t [ a2l 0101, )
X (X, Xy, X3, - ., xN|B() X1, - ., XN)
E%deljdxzjdx’lde'z(xl,leal,zlx'lJ'z)(x'nx’zlﬁ(z)(t)lxl,xz),
(6.81)
where 0;; = O(p;, b, 4;, §;) and
(42l (Ol a) = NV = 1) [ [ sy 652

X <x,1,.x,2,X3, - ,xNI/B(t)lxl, . ,XN>
is the two-body reduced density matrix.

We can now introduce the one- and two-particle reduced Wigner functions.
The one-particle reduced Wigner function is defined as

r r
filk R, ) = [are*"(R+3 o) ()R —3). (6.83)
and the two-particle reduced Wigner function is defined as

f2(k1 ’ k27 Rl ) R2; t) = JJdrld rzeikl'l'lei'kzl'z

Iy ) ) r ) )
X <R1 + E;Rz +-i‘p(2)(t)|R1 — EI,RZ - _i>

(6.84)

Higher-order Wigner functions can be defined in a similar manner.
In analogy to the classical distribution function, the one-particle Wigner
function obeys the relations

j (j 7:;3f1 (k,R,1) = (Rl30)()IR) = n(R, 1), (6.85)
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where n(R, ) is the average number of particles at point R and time, ¢, and
defl (k,R, 1) = (k|pn)(t)|k) = n(k,1), (6.86)

and n(k, t) is the average number of particles with wavevector, k, at time ¢. The
Wigner function can be used to take phase space averages in the same way as
the classical distribution functions. For example, the average current is defined
as

(IR ) = | (2":)3 Afi (I, R, ), (6587)

where % is Planck’s constant. However, the Wigner function can become
negative and therefore cannot always be interpreted as a probability density.

We can derive the equation of motion for fi(k,R,¢) in the following way.
For a system with a Hamiltonian

H= Z"'—.*' Z V(g - q), (6.88)

i=1 i<j

the equation of motion for the one-particle reduced density matrix is

0 . ik o

Q. <l‘1 |p(1)(t)‘l'2) =—35_ (Vl‘l + vl‘z) ) (vl‘l - vl‘2)<r1|p(1)(t)|r2>

ot 2m

i "
- 2] ar e - ) - v e re Ol ),

(6.89)

where V(r; — r2) = (r1,r2|V(q; — q;)|r1,r2).

Let us now change to relative and center-of-mass coordinates, r = ry — I

and R = %(rl + r3), respectively. We then multiply by e*T and integrate over
dr and find

xr O r r
'k'r—- — p — —
Jdl‘e o <R+2|p(1))(t)|R 2>
ih ik r. r
= ";Jdrekrvk : Vr<R +§|P(1)(t)|R - §>

——%Jdr’Jdreik"[V(R—g—r’> —v(R+3-7)]

r N r
X <R+§1r’,p(2)(t)|R —-2-,l">.

(6.90)
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In Eq. (6.90) we can integrate the first term on the right by parts to remove the
derivative with respect to r. We can also introduce dummy variables into the
second term on the right and make use of definitions in Egs. (6.83) and (6.84) to
obtain

0 h
-a-;fl(k, R, t) = — ;n—k . VRfl(k, R, t)

i dk [ , 10 L 19
‘ﬁj(zﬂ)3jdr[V(R_r_Ea—k)_v<R_r+2iak)]

x LK R; K, r';1).

(6.91)
Equation (6.91) is the quantum kinetic equation for the one-particle reduced

Wigner function. If we rewrite it in terms of momenta p = fik and p’ = Ak, it
takes the form

0
a. fll(p’R,t) +_’% ' vall(pv Ra t)

6t= —%J(i:’fjdr' [V(R——r’ —%%) ——&(R—r’ﬁ—%%ﬂ (6.92)

szl(p7 R; p’, r’; t),

where

1

1 1
f;ll(plarl; R ;pmrn) = ﬁfn (ﬁplarl; R ;ﬁpmrn) . (693)

We can now expand the potential on the right-hand side in powers of % and take
the limit # — 0. We then retrieve the classical kinetic equation.

The Wigner function can be used to take the average value of a large class of
ordinary functions of momentum and position but in some cases it will give the
wrong answer. The average value of any quantity which is only a function of
position or only a function of momentum can always be taken (this is easily
seen from Egs. (6.85) and (6.86)). However, only those functions which involve
both position and momentum can be used for which the Weyl correspondence
between the quantum and classical version of the operators holds. To see this,
let us consider the classical function O(p, q) of phase space variables p and q.
We can find the quantum version of this function as follows. We first introduce
its Fourier transform, O(a, #), with the equation

O(p,q) = J J dadn O(a,n)e P19, (6.94)
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Matrix elements of the quantum operator corresponding to O(p,q) can be
obtained from the Fourier transform, O(a, ), via the equation

(|0 = j j d ady O(a,)(r'[e@B19|r), (6.95)

where p and § are momentum and position operators. If the classical function
O(p, q) and matrix elements of the correspondlng operator O are related by the

above procedure, then the expectation value of O is given by
(©()) = | [aparo,ryi(e, .. (6.96)

There are some cases for which the Weyl procedure does not give the correct
correspondence between classical and quantum operators (such as the
commutator [p,#]_, the square of the Hamiltonian A?, the square of the
angular momentum L2, etc.) and the Wigner function gives the wrong result.
Then it is necessary to introduce more general quantum phase space
distributions which may in general be complex functions [25].

B EXERCISE 6.7. Com ute the Wigner function for a system with a
density operator, p = hivab(e” e~ 4 ¢bb e"”‘z)

Answer: First compute the matrix element of the density operator in the
position basis,

(x1]plx2) = % \/f—r(e“”‘f + e"”"‘g)exp (— (x—14;)7i22—)—> ) (1)

Now let x; = X + (x/2) and x; — (x/2). The Wigner function is then given
by (after some algebra)

f(k, X) = J:o dxe (X + % |AIX — §>

4abh? —aX? )ex (—bk2h2 )COS<2abﬁ2kX)
=|———=exp| ——= e — ).

T+ abi? CP\1+abi2) "P\1 + abi2 1+ abl?
(2)

A plot of the Wigner function is shown here for a = 1 and bh? = 2. Note that
there are some regions where it becomes negative, indicating that it is not a

probability density.
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» $6.C. Microscopic Balance Equations [26]

For quantum systems with short-ranged interactions and long-wavelength
inhomogeneities, we can derive microscopic balance equations for the particle
density, momentum density, and energy density in a manner analogous to the
derivation for classical systems. We first note, however, that the position and
momentum operators satisfy the commutation relations,

[ﬁi:ﬁj]— = 01 [(11, (ij]— = Oa and [(111 f’j]— = lhél} (697)

The commutator of the momentum operator p; with an arbitrary function of
coordinate operators is

b F(qy,---,qy)]- = _ih—E (6.98)

while the commutator of q; with an arbitrary function of momenta
G(By,...,Py) is
oG

[@:; G(By, - - By)]_ lhEE. (6.99)

Let us assume that the dynamics of the system is governed by a Hamiltonian of
the form

N IB,] 2 (1/2)N(N-1)
Z‘— Z V(Iqi_iijl)' (6.100)
= 2m i<j
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Then from Eq. (6.57) the equation of motion for the operator q; is

o&, i.s .. P
__—l_—_:—— H . =—_l. .
5 =5 DAl = (6.101)

The equation of motion of p; is given by

aﬁi____ 6V Iql qll)
= ;[ % ] ;:F (6.102)

These equations have the same form as the classical equations.

For quantum systems, the microscopic expressions for the densities must be
Hermitian in order to be observable. Thus, we must have symmetrized
expressions for operators which involve both momentum and position. Using
Eq. (6.57) and the above equations, we can show that the balance equation for
the particle number density is given by

6A AN

= A(@";R) = -V - J"(",";R), (6.103)
where the particle density is defined as
N
= 6(& —R) (6.104)
i=1
and the particle current density is defined as
I"®",q¢";R) Z Pi s 4, — R) +6(q; )E : (6.105)
T2
As usual, we let pV denote the set of momenta p¥ = (P, ..., py) and we let ¥

denote the set of positions ¢¥ = (q,...,qy)-
The balance equation for the momentum density takes the form

O 2p/iaN a 3p AN
m I"(6",4";R) = —Vr - P (5",4"; R), (6.106)

where the momentum current tensor, J?(p¥, §V; R), is defined as

]
+9,6(4; — R)b; + 6(q; — R)D;p)] (6.107)
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In Egs. (6.106) and (6.107) the notation
Vr - (0:6(q; - R)f)i)T = p,Vr - 6(q; — R)p; (6.108)

has been used.
Finally, the balance equation for the energy density can be written

0s N - ShoaN -
= h(p", 4" R) = -V - J'(", 4%, R), (6.109)

where the energy density is defined as

Z

A", 4" R) =2 [hib(& —R) + 6(§; — R)h) (6.110)
i=1
with
S .
== +§§V(|q,- q) (6.111)

and the energy current density is defined as

T (6.112)
123 B by - a6 - R

. . g (BT D)
600 - R@ - 4y 2R

To obtain Eq. (6.112), one must use the fact that the center-of-mass coordinates
commute with the relative coordinates.

» S6.D. Mixing Flow [7-9]

Ergodicity is not a sufficient condition on a dynamical flow to ensure that a
probability distribution that initially is localized on an energy surface will
spread, in a course grained manner, throughout the energy surface. Spreading
throughout the energy surface is the type of behavior that we need for a
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Newtonian system to approach a state that might be used as an equilibrium
state. A type of flow that does have this feature, and therefore might exhibit
irreversibility in a course-grained sense (because of the unstable nature of its
dynamics!) is mixing flow. Mixing flow is chaotic and causes any initial
probability distribution to spread throughout the energy surface. Mixing flow is
ergodic, but ergodic flows are not always mixing (the exceptions, however, are
rare).

A system is mixing if, for all square integrable functions, f(X") and g(XV),
on the energy surface, Sg, we obtain

_ Js SX")dSe [, 8(X")dSe
(X(E)*

lim F(XMg(XN(1))dSk ,  (6.113)

where ) (E) is the structure function defined in Section 6.C.

Equation (6.113) ensures that the average value of a dynamical function
f(X¥) will approach a stationary value in the limit ¢— foo. Let
g(XM) = p(X¥), where p(X") is a nonstationary probability density. Then

) = [ A st s | FOMSe. (6114

Thus, f(t) approaches an average with respect to the stationary state p; =
EN

It is important to emphasize that mixing gives a coarse-grained and not a
fine-grained approach to a stationary state. The average of the probability
density becomes uniform, but the probability density itself cannot because of
Eq. (6.24). The probability density does not change in a neighborhood of a
moving phase point, but it can change at a given point in space. We can
visualize this if we consider a beaker containing oil and water. We add the oil
and water carefully so that they are initially separated, and we assume that they
cannot diffuse into one another. We then stir them together (Fig. 6.2). The local
density and the total volume of the oil remain constant, but the oil will get
stretched into filaments throughout the water. Therefore, on the average, the
density of the oil will become uniform throughout the beaker. If we are careful
enough, we can also stir the oil back into its original shape. Therefore, while we
get an approach to uniformity, the whole process can be reversed. However, as
we shall see, mixing does lead to the appearance of random behavior in
deterministic systems and coarse-grained irreversibility.

The meaning of Eq. (6.113) may therefore be summarized as follows. Let A
and B be two finite arbitrary regions on the surface Sg. Let us assume that all
phase points initially lie in A. If the system is mixing, and we let it evolve in
time, the fraction of points which lie in A or B in the limit ¢ — 300 will equal
the fraction of area Sg occupied by A or B, respectively.
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Fig. 6.2. Stirring oil and water together leads to uniformity, on the average.

An example of a discrete dynamical system which is mixing is the Baker’s
map. The dynamics evolves on a unit square, 0 < p <1 and 0 < g < 1. The state
points evolve in discrete time steps and change value in a discontinuous manner.
The dynamical evolution is governed by an ‘“‘alphabet’ with two letters, O and
1, and the set, {S}, of all possible infinite sequences of letters. Each infinite
sequence has the form S = (...,5_,,5_1,50,51,85,....), where S; =(0 or 1)
and k= (0,+1,£2,...), and corresponds to a state point in the two-
dimensional phase space. Each sequence maps onto the unit square according
to the rules,

; S, S
p= ZSZk +—4—+'—8—+ and
k=0 o s (6.115)
q= Zsz-"_—+42+83+

Thus, if all Sy =0, then p=¢g =0, and if all S = 1, then p=¢g =1 since
Zk—1(2) = 1. All other cases also lie on the unit square, 0<p<1 and
0<qg<1.

The dynamics is introduced into the phase space by means of the Bernoulli
shift, U, which is defined so that US; = Sj.;. That is, the operator, U, acting on
a sequence, S, shifts each element to the right one place. The shift acting on the
sequence, S, is equivalent to the following transformation (the Baker’s
transformation) on the unit square:

U(p,q) = (2p,39), 0<p<; (6.116)
’ (2r—-1,39+3), 1<p<l. '
The inverse transformations is
1 1
_pazqa OS S_
U™\(p,q) = Gp,20) =3 (6.117)
Gp+3,29-1), 1<q<1
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The Jacobian of the transformation is equal to one. Therefore, the mapping, U,
is area-preserving. Let us now look at how the probability density evolves under
the action of the shift, U. Let po(p, q) be the initial probability density and let us
assume that it is continuous and smooth. After we allow U to act n times, we
obtain

pn(P,q) = U"po(p,q) = po(U"p,U™"q). (6.118)
More explicitly,
pn(3P,29), 0<gq<}
pnr1(Pyq) = { L 1 (6.119)
pn(§p+§72q_1), §Sq_<_1

The time evolution operator, U, is an example of a Frobenius—Perron operator
[27] and [28].

The effect of the Baker’s transformation is to stretch an initial area element
into filaments throughout the unit square, much as a baker does in kneading
dough. Note that whenever Sy = 0 the point corresponding to the sequence, S,
will lie to the left of p =1 and when Sp =1 it will lie to the right of p = ;.
Therefore, points corresponding to sequences with 0 and 1 distributed at
random in the positions, Sy, will be shifted to the right or left of p = by U at
random. If initially the probability density is po(p,q) =0 for 0<p <1 and
0<g<1 and p(p,q) =2 for 1 <p<1 and 0<¢<1, then the probability
density at times n = 1,2, 3, are shown in Fig. 6.3.

As we have seen above, there is an element of randomness in the position of
a point in the p direction. Let us look at the reduced probability density, ¢(p), in
the p direction. The quantity ¢,(p)dp is the probability of finding a point in
the interval p — dp at ‘time’ n. It is defined as ¢, = fol dqpn(p,q). Using
Eq. (6.119), ¢,1(p) becomes

1
$nt1(P) =-;—¢n(§—) +%¢n(§+5). (6.120)

The reduced probability evolves in a Markovian manner. We can show that
lim,_,o.¢»(p) = 1 and, therefore, that the reduced or coarse-grained probability

Lt
UL
Lz

— —

b b

Fig. 6.3. Evolution of an initial probability under the action of the Baker’s map.
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density approaches a constant. If we iterate Eq. (6.120), we obtain

2"—-1

¢n(p)=2—1,,k2=;¢o(§+—2§). (6.121)

For a continuous and smooth function, ¢y(p), we obtain

1-1/27 1

iim ¢n(p) = im [ dyan(B+y) = [ dmo) =1, (6122)
n—oo n—oo | 2 0

where we have let y = k27". Notice that for n — —00, ¢,(p) will not approach
a constant. However, a reduced probability density, defined in terms of the
variable g, does. Therefore, the Baker’s transformation exhibits irreversibility in

a course-grained sense.

. Il EXERCISE 6.8. Compute the trace of the Baker map, o,

Answer: Let us denote U"(p,q) = (p"(p,9),4"(p,q)), where p"(p, q) and
q"(p, q) are functions of p and q. The trace of U" can be written

1 1
w0~ d| ddo-P(pG- D) ()
Before we evaluate Eq. (1), let us note the following property of the Dirac
delta function. Let us consider a function, f(x), which has zeros at points X0,k
(where k= 1,2,...,M), so that f(xp,) = 0. Then

M

_ 6(x — xok)
6(f(x)) = ;m, (2)

where f'(x) = (df /dx).

We now can evaluate the trace of {/". Notice that the delta functions will
give contributions when p" = p and q" = q. That is, for all 2" nth-order
periodic points of the map, U". First note that (dp,/dpy) =2" and
| (dgn/dqo) = (1/2"). Thus,

-1 —1 -1
Tr U = dp"—ll i ’ =2"(2"—1)"1(1—i)
Period n points dp 0 dqo 2"
| 1\7? & 1\
m=

L_(Cf' Ref. 28). The trace of U" is equal to the sum of the eigenvalues of U”.
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» S6.E. Anharmonic Oscillator Systems [4]

The study of anharmonic oscillator systems has long been important in
statistical mechanics in connection with the theory of heat transport in solids
[29]. One would like to know the mechanism of heat conduction. If heat is
added to a harmonic lattice and divided unequally between the normal modes,
there is no way for the system to reach equilibrium because the normal modes
do not interact. However, if slight anharmonicities exist in the lattice, it was
expected that equipartition of energy would occur and that the system would
thus reach equilibrium.

In 1955, Fermi, Pasta, and Ulam [30] conducted a computer experiment
intending to show this. They studied a system of 64 oscillators with cubic and
broken linear coupling. They found that when energy was added to a few of the
lower modes there was no tendency for the energy to spread to the other modes.
This behavior is quite different from what one would expect if the anharmonic
oscillator system were an ergodic system. Then one expects the system to reach
a stationary state in which all states with the same energy would be equally
probable, and one expects to see energy sharing among the modes.

The type of behavior that Fermi, Pasta, and Ulam observed is now fairly well
understood in terms of a theorem due to Kolmogorov [31], Amold [32], and
Moser [33] (commonly called the KAM theorem). The theorem states that for a
system with weak anharmonic coupling (which satisfies the conditions of the
KAM theorem), most of the energy surface will be composed of invariant tori
and the system will exhibit behavior in many respects similar to that of an
unperturbed harmonic oscillator system. The energy surface will not be
metrically transitive. As the coupling is increased, however, the invariant
regions of phase space break down and at some point one expects to see a sharp
transition to chaotic behavior and something similar to equipartition of energy
between the modes. (True equipartition requires ergodicity, and it is not clear
that anharmonic oscillator systems are ergodic above the transition energy.)

There is now a variety of nonlinear oscillator systems which have been
studied and which exhibit a transition from stable to chaotic behavior as certain
parameters are changed [4]. Henon and Heiles [34] studied the bounded motion
of orbits for a system with two degrees of freedom governed by the Hamiltonian

H=3pi+p+ 4 + &)+ a4 — 391 (6.123)

The trajectories move in a four-dimensional phase space but are restricted to a
three-dimensional surface because the total energy is a constant of the motion.
It is possible to study a two-dimensional cross section of the three-dimensional
energy surface. For example, we can consider the surface g, = 0 and look at 2
trajectory each time it passes through the surface with positive velocity p; > 0-
It is then possible to plot successive points of the trajectory (g, = 0,p, > 0) in
the p1, 1 plane. If the only constant of motion is the total energy, £, then the
points should be free to wander through the region of the p;,q; plane
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Fig. 6.4. Henon-Heiles result for E = 0.08333. (Based on Ref 34.)

corresponding to the energy surface. The motion we see will appear to be quite
similar to ergodic motion. If there is an additional constant of the motion, the
points will lie on a smooth curve in the p;, q; plane.

Henon and Heiles studied trajectories whose motion was governed by Eq.
(6.123) for a variety of energies. The results are sketched in Fig. 6.4. For an
energy, E = 0.08333, they found only smooth curves, indicating that to
computer accuracy there was an additional constant of the motion. Each closed
curve in Fig. 6.4 corresponds to one trajectory. The three points of intersection
of lines are hyperbolic fixed points, and the four points surrounded by curves
are elliptic fixed points [4]. However, at an energy E = 0.12500, the picture
begins to break down (cf. Fig. 6.5). Each closed curve in Fig. 6.5 corresponds to
one trajectory. The five islands correspond to one trajectory, and the random
dots outside the closed curve correspond to one trajectory. At an energy of
E = 0.16667, almost no stable motion remains (cf. Fig. 6.6). A single trajectory
is free to wander over almost the entire energy surface. In a very small energy
range the system has undergone a transition from stable to chaotic behavior.
Additional studies of the Henon—Helies system [35, 36] have shown that
trajectory points move apart linearly in the stable regions, whereas they move
apart exponentially in the chaotic regions.

The change from stable to chaotic behavior sets in rather abruptly. This has
been understood in terms of an overlapping of resonances in the system. The
Hamiltonian for a general anharmonic system with two degrees of freedom can
be written in terms of action angle variables in the form

H=H0(J1,JZ) +/\V(J1aJ2a¢l7¢2) (6124)
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Fig. 6.6. Henon-Heiles result for £ = 0.16667. (Based on Ref 34.)

by means of the transformation
\ 172
pi = —(meJ,-)l/zsin¢,- and qi = (%J-‘j) COS¢,‘.

The function Hy(J;,J>) has a polynomial dependence on the action variables Ji
and J, (not merely a linear dependence as would be the case for a harmonic
system) and no angle dependence, while V(J1,J2,¢1,¢;) depends on both
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action and angle variables and is a periodic function of the angles. When A = 0
the action variables will be constants of the motion, and the angles ¢; and ¢,
will change in time according to the equations

¢i = wi(Jr,J2)t + dio (6.125)
for (i = 1,2) where
_ 0Hj
w;i(J1,J2) = T (6.126)

For the anharmonic case, the frequencies w;(J;,J>) will be continuous because
they depend on the action variables, even for two degrees of freedom. This
continuous dependence on the action variables is quite different from a
harmonic oscillator system where the frequencies, w;, are constant.

For systems which satisfy the conditions of the KAM theorem (namely,
small X and nonzero Hessian, det |0°Hy/8),0;,| # 0 for (i,j) = 1 and 2), only a
very small region of phase space, the resonance regions, will exhibit chaotic
behavior. The rest of the phase space will correspond to stable motion. If one
tries to construct new action variables #; which are constants of the motion
when \ # 0 but small, one finds that this can be done for most of the phase
space, except for the resonance zones. In the resonance zones, perturbation
expansions for #; diverge. Let us construct a perturbation expansion [37] for
the action variables _¢; to lowest order in A. Let us consider a Hamiltonian of
the form

H=Ho(J1,72) + X Y Vi, m (1, J2)cos (11 + nach2) (6.127)

n,n2

and let us introduce the generator

F(jl?j2a¢la¢2) = jld’l + /2 o2 + Z an,nzsin(n1¢1 + N2¢2) (6128)

ny, n2

of a canonical transformation from variables J;, ¢; to variables #;, ®;, such that
the variables #; are constants of the motion. Then

OF
Ji = 36 Fi+ ’;2 1By, n,c08(n1¢1 + na¢2) (6.129)

for i = 1,2 and

OF
-9,

Ly
I

(6.130)
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for i = 1,2. If we substitute Eq. (6.129) into Eq. (6.127) and keep terms to
lowest order in A (this requires a Taylor series expansion of Hp), we obtain

H= Ho(jla fz) + Z{(nlwl + nzwz)Bm,nz + ’\Vnhnz}cos(n1¢l + n2¢2)'

ny,ny

(6.131)

To lowest order in A, #, and #, will be constants of motion if we choose

—Aan 512

B = (mwy + nawy) (6.132)
Then
H = Hy(#, #,) + O(X) (6.133)
and
Si=h+) AV cos(ni ¢ + nagz) + O(N?) (6.134)

= (mwi + naws)

Note, however, that since w; and w, are functions of J; and J,, there are values
of J; and J, for which the denominator (njw; + now,) can be zero, and the
perturbation expansion becomes meaningless. Indeed, as long as

|n1w1 + nzwzl < )\Vn‘ n2 (6.135)

the perturbation expansion will diverge and _#; is not a well-behaved invariant.
This region of phase space is called the resonance zone and (nyw; + nywz) =0
is the resonance condition. It is in the resonance zones that one observes chaotic
behavior.

If the regions of phase space which contain resonances, and a small region
around each resonance, are excluded from the expansion for #, then one can
have a well-behaved expression for #,. Thus, one can exclude regions which
satisfy the condition

[n1w1 (11,12) + nzwz(Jl,JZ)] < ’\Vnhnz'

For smooth potentials, V,, », decreases rapidly for increasing n; and nz. Thus
for increasing n; and n,, ever smaller regions of the phase space are excluded.

Kolmogorov, Amold, and Moser proved that as A — 0 the amount of
excluded phase space approaches zero. The idea behind their proof is easily
seen in terms of a simple example [38]. Consider the unit line (a line of length
one). It contains an infinite number of rational fractions, but they form a set of
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measure zero on the line. If we exclude a region

m ¢ m €
C-5)<2<C-3
n nd n n n

around each rational fraction, the total length of the unit line that is excluded is

i;( ) —2szn2 ——;;0

Thus, for small A, we can exclude the resonance regions in the expansion of ¢,
and still have a large part of the phase space in which ¢, is well-defined and
invariant tori can exist.

Walker and Ford [37] give a simple exactly soluble example of the type of
distortion that a periodic potential can create in phase space. It is worth
repeating here. They consider a Hamiltonian of the type

H = Ho(]l,.lz) + )\11]2008(2¢1 — 2¢2) =E, (6136)
where
Ho(J1, o) = Jy + 0 = J} = 3010, + J2. (6.137)

For this model, there are two constants of the motion, namely, the total energy
H =FE and

I=J1+J/5. (6138)

Therefore, we do not expect to see any chaotic behavior for this system.
However, the unperturbed phase space will still be distorted when A # 0. The
frequencies w; for this model are given by

OHy
=1-2/;-3 .
Wi =g Jy =37, (6.139)
and
OH,
wy=—2=1-3J+2J,. (6.140)
YA

If we want the frequencies to remain positive, we must choose 0 < J; < % and
0<J; < {; and, therefore, E < 3.

Let us ;l)lot trajectories for the Walker—Ford case (g2 = 0,p, > 0) (note that

= (2J))%cos¢; and p; = —(2J;)"/*sing;). We find that for A =0 the

traJectones trace out concentric circles in the p;,q; plane. When the
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Fig. 6.7. Cross—section of the energy surface for the Hamiltonian, H = J,+
Jr — J12 —-3NhJ: + 122 + MiJycos(2¢y — 2¢,) = E. There is no chaotic behavior.
(Based on Ref. 37.)

perturbation is turned on (A # 0), the phase space becomes highly distorted. If
we set ¢ = %w (this means ¢, = 0, p, > 0) and substitute Eq. (6.138) into Eq.
(6.136), we obtain the following equation for the perturbed level curves:

(3 + Acos2¢)J2 — (S + Mcos2¢,)J; +1+1* —E =0. (6.141)

They are sketched in Fig. 6.7. Most of the phase space is only slightly distorted
from the unperturbed case. However, there is a region which is highly distorted
and in which two elliptic fixed points (surrounded by orbits) and two hyperbolic
fixed points appear [4]. The fixed points occur for values of J; and ¢; such that
Ji+Jp= (¢1 ¢2) =0. If we use the fact that J; = —0H/O¢; and

= OH/dJ; and condition ¢, = 37w/2, we find that the hyperbolic orbits
occur when

(5-=2)
(1=24)

while the elliptic orbits occur for

Ji = J and (¢1—¢)=0 and m (6.142)

(5+A) o 3w
h=frat  @imd)=g wmd T (6.143)

The first-order resonance condition for this model [cf. Eq. (6.135)] is
2w; — 2wy, = 0 or, from Egs. (6.139) and (6.140), J; = 5J,. Therefore, from
Egs. (6.142) and (6.143) we see that the distorted region of phase space lies in
the resonance zone.
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In general, for a Hamiltonian of the form
H = Ho(J1,J2) + AV(Jy, J2)cos(ny 1 + nagy) (6.144)

there will be no chaotic behavior because there is always an extra constant of
motion,

I = n211 - n1]2. (6.145)

However, when the Hamiltonian is of the more general form given in Eq.
(6.127), the extra constant of motion is destroyed and the resonance zones
become more complicated and begin to overlap. When this occurs one begins to
see chaotic behavior.

Walker and Ford study the example

H = Hy(J1,J2) + A\J1J2c08(2¢1 — 2) + M1 T2 *cos(2¢1 — 3¢,), (6.146)

where an extra cosine term has been added to Eq. (6.136). For this model there
is no longer an extra constant of motion. There are two primary resonances
which grow as A; and ), are increased. In Fig. 6.8, we sketch their results. For
low energies there is no chaotic behavior (to computer accuracy). However, as
the resonance zones grow and begin to overlap, the trajectories in the regions of
overlap become unstable and begin to exhibit chaotic behavior. In Fig. 6.8 the
dots correspond to a single trajectory.

D1 e_020950000

Fi lg 6.8. Cross section of the energy surface for the Hamiltonian, H = J; + J,
—J2 - 35,0, + J3 + MJ1J2 cos(2¢1 — 2¢) + AaJ1J cos(2¢; — 3¢) =E. (a) Phase
Space trajectories below the energy of primary resonance overlap. (b) Phase space
trajectories above the energy of primary resonance overlap. When primary resonances
overlap, large-scale chaos occurs in their neighborhood. (Based on Ref. 37.)
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Thus, from these simple examples we see that the chaotic, or ergodiclike,
behavior of phase space for the anharmonic oscillator system appears to be
caused by the overlapping of resonances. If the energy surface is filled with
resonance zones, as is often the case, then we expect chaotic behavior to set in
at very low energy.

Anharmonic oscillator systems are a rather special type of system and
their ergodicity has never been established, for obvious reasons. A completely
different type of system is a system of hard spheres. For systems of hard
spheres, ergodicity and mixing behavior have been established [39]. A
proof that systems with Lennard-Jones types of potential are ergodic has
never been given. However, when the number of degrees of freedom becomes
large, the “regular” regions of the phase space appear to become relatively
less important than the chaotic regions and statistical mechanics, which is
built on the assumption that ergodicity appears to work perfectly for those
systems.

The chaotic behavior illustrated in this section is indicative of unstable flow
in phase space. Orbits in the chaotic region which initially neighbor one another
move apart exponentially and may move to completely different parts of the
energy surface. If we start with an ensemble of orbits in some region of phase
space and assign a probability distribution to them, the probability distribution
will spread on the energy surface, and we will become less certain about the
actual state of the system. Systems with unstable flow have the potential of
exhibiting decay to thermodynamic equilibrium: An initially localized
probability distribution can spread and, in a coarse-grained sense, can fill the
energy surface.

» S6.F. Newtonian Dynamics and Irreversibility [40, 41]

The instability and chaos that we have described in the baker map, Eq. (6.116),
and that we have illustrated in the Henon—Heiles system appears to be a source
of the irreversibility seen in nature. One of the great paradoxes of physics is the
fact that Newton’s equations are reversible, but much of nature evolves in an
irreversible manner: Nature appears to have an “arrow of time.” There is a new
field of statistical physics which finally is resolving this paradox [40—44]. The
resolution of the paradox is most easily seen in the spectral properties of chaotic
maps such as the baker map. Individual trajectories in chaotic systems move
apart exponentially and become impossible to compute even after a fairly short
time. However, in such systems, smooth initial probability distributions
generally relax to a smooth final distribution after some time. There are now
several “reversible” chaotic maps for which a spectral decomposition can be
obtained in terms of the decay rates and their associated eigenstates [28, 42,
43]. The decay rates are related to the Lyopounov exponents for the underlying
chaos, and determine the physically observable decay properties of such
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systems. The spectral theory of these systems can be formulated outside of
Hilbert space.

Considerable progress has also been made in understanding the emergence
of irreversible behavior in unstable Hamiltonian systems, at least for the case
when the dynamical phase space contains dense sets of resonances. For
such systems a spectral theory can also be formulated outside the Hilbert space
[45-46]. We don’t have space to say more about this beautiful new area of
statistical physics, but the cited references should give interested readers a fairly
readable entrance to the field. Ref. 41 gives a historial overview.
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PROBLEMS

Problem 6.1. Consider a system of N uncoupled harmonic oscillators with Hamiltoniz’m,
H =Y (p?/2m; + kig?/2). Assume that the system initially has a probability density
p(pV, q’(’ ,0) = Hfi 1 6(pi — Pi0)6(q: — gio). Compute the probability density p(p", qV.1)
at time ¢, where pN =(p1,.-- ,Pn) and qN = (q1,-.. ,qN).
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Problem 6.2. Consider a particle which bounces vertically in a gravitational field, as
discussed in Exercise 6.1. Assume an initial probability distribution, p(p,z,0) =
196(2)0(1.0 — p)©(p — 0.1)(B(x) is the Heaviside function; O(x) =1 for x > 0 and

(x) 0 for x < 0). What is p'(J, 8,0)? Sketch p(p, z,t) and p'(J, 6, ¢) for ¢t = 0.4, mass
m = 1, and gravitational acceleration g = 1.

Problem 6.3. Consider a particle with mass m = 1 moving in an infinite square well
potential, V(x) = 0 for —1 < x < 1 and V(x) = oo otherwise. Assume that initially the
particle lies at x = —1 with momentum, p = po for 0.1 <pg <1.0 in the positive x
direction. (a) Find the solution of the Liouville equation in action-angle space at time .
(b) At what time does the initial distribution of points begin to break apart in (p,x)
space?

Problem 6.4. For a noninteracting gas of N particles in a cubic box of volume V = L3,
where L is the length of the side of box, find the solution, p(p*, g*", 1), of the Liouville
equation at time ?, where pM = (p;,...,py) and ¢~ =(q,...,qy) with
p; = (Dix;Piy, Piz) and q; = (gix, iy, giz)- Assume periodic boundary conditions, and
assume that the probability density at time ¢ = 0 is given by

p(p* - ¢, 0) = (‘2/;) e P sin(mllja> for 0<gqi, <L.
i= la—x,y,z

Problem 6.5. Consider a system with one degree of freedom whose dynamics is
governed by a Hamiltonian of the form H(p,q) = ip* +14* = E, where E is the total
energy. Assume that initially p(p,q,0) = (1//7 )6(p)e 7, Solve the Liouville equation
for p(p, q,t). (Hint: It is useful to first transform to action-angle variables. The solution
involves elliptic functions.)

Problem 6.6. A two-level system has a Hamiltonian matrix

Hyy Hyp\ (3 4
Hyy Hy,) \—-4 -3)’

where, for example, H; » = (1|H|2). The density matrix at time ¢ = 0 is
(m,l(o) pi2(0)) _ (1 O
p2,1(0)  p22(0) 0 0/
(Pt,l(’) P1,2(f))
p21()  p22(0)

at time 7. (b) What is the probability to be in the state |1) at time ¢ = 0? At time ¢? For
simplicity, assume that & = 1.

(a) Find the density matrix

Problem 6.7. An atom with spin 1 has a Hamiltonian A = AS? + B(52 — §2), where
Sx, Sy, and S, are the x,y, and z components of the spin angular momentum operator In
the basis of eigenstates of the operator, SZ, these three operators have the matrix
representations

) 10 0 s [0 10 a0 10
S;=H{0 0 0 |, Sx=—|1 0 1}, and S§y=—xf -1 0 1 }|.
0 0 —1 v2\o 1 0 ivV2\ 0 -1 o
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(a) Write the density matrix (in the basis of eigenstates of S,) at time ¢ = 0 for two
different cases: (i) The atom is initially in an eigenstate of S, with eigenvalue +#; (ii)
the atom is initially in an eigenstate of S, with eigenvalue +7. (b) Compute the density
matrix (in the basis of eigenstates of S,) at time ¢ for each of the two cases in (a). (c)
Compute the average z component of spin at time ¢ for the two cases in (a).

Problem 6.8. Consider a harmonic oscillator with Hamiltonian H = (1/2m)p*+
Lmu?32. Assume that at time ¢ = O the oscillator is in an eigenstate of the momentum
operator, 5(0) = |po)(po|. (a) Write the Liouville equation in the momentum basis. (b)
Compute the density matrix (p’|5(z))|p), at time t.

Problem S6.1. Locate all period-3 points of the Baker map in the (p,q) plane.



