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Abstract

It is shown how to resolve the apparent contradiction between the macroscopic
approach of phase space and the validity of the uncertainty relations. The main
notions of statistical mechanics are re-interpreted in a quantum-mechanical way,
the ergodic theorem and the H-theorem are formulated and proven (without “as-
sumptions of disorder”), followed by a discussion of the physical meaning of the
mathematical conditions characterizing their domain of validity.

0 Introduction

0.1

The object of the present paper is the clarification of the relations between the macro-
scopic and the microscopic point of view of complex systems; that is, the discussion of
the question why the known thermodynamic methods of statistical mechanics make it
possible to make statements about incompletely (viz., only macroscopically) known sys-
tems that are correct most of the time. In particular, first, how the peculiar, seemingly
irreversible behavior of entropy arises, and second, why the statistical properties of the
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(fictitious) micro-canonical ensemble can be attributed to the incompletely known (real)
system And these questions shall be attacked with the means of quantum mechanics.
In classical mechanics, it is known that these questions have led to the development
of two elaborate theoretical systems: the statistical mechanics of Boltzmann and that
of Gibbs. The former could not provide a final and satisfactory solution because it had
to make essential use of so-called assumptions of disorder—and exactly to fathom the
nature of this “disorder” is the real problemE The latter would basically be adequate
for this program; however, it leads to a mathematical problem—the so-called quasi-
ergodic problem—that has been and still is absolutely insurmountable. Only if the
corresponding mathematical conjecture is valid, the Gibbsian theory succeeds.

In general questions of principle, however, the new quantum mechanics differs from
the classical mechanics by being remarkably simpleﬁ it is due to this circumstance that
in quantum mechanics, if we follow the Gibbsian path, we can reach the goal with
relatively simple mathematical means. That is, it will be possible in what follows to
prove the ergodic theorem and the H-theorem (which are the two questions mentioned
above) without the need to recur to any assumption of disorder. But before speaking
of them in more detail, we need to say more about the notion of the macroscopic in
quantum mechanics.

0.2

The main difficulty with re-constructing the Gibbsian theory in quantum mechanics
is that the tool of “phase space”—i.e., for a system of f degrees of freedom, the
2f-dimensional space described by the f coordinates qi,...,q; and the f momenta
P1,...,pp—cannot be dispensed with: all of the important notions (energy surface,
phase cells, micro-canonical and canonical ensembles, etc.) are based on it. But the
phase space cannot be formed in quantum mechanics, since a coordinate ¢; and the cor-
responding momentum p, are never simultaneously measurable; instead, their probable
errors (spreads) Ag, and Apy are always related according to the uncertainty relation
Agqp Apy > h/ 2l Moreover, it is impossible to specify, for a state of the system, two
intervals I,.J so that, with certainty, g; lies in I and py in J (even if the product of
their lengths is much bigger than //2)3—thus, not only the continuous phase space but

'We are thinking of closed and isolated systems. For a system in contact with a large heat reservoir
it is known that the so-called canonical ensemble is appropriate. However, this case can easily be
reduced, with the methods of statistical mechanics, to the former, by including the heat reservoir into
the system.

2For a critical discussion of this matter (also concerning our subsequent remarks) see [5, 6].

3For many special problems it is, of course, the other way around.

4See [9] and [1]. Concerning the limit //2 see, e.g., [23 p. 272].

®That is, if the wave function ¢(qi,...,qs) vanishes for all values of g; outside a finite interval I
then, expanding

(e o) oo )
gp(ql,,,,7qf):/ / C(pl,...,pj')eﬁ(p1Q1+"'+pqu)dp1-~-dpf,
—0 — oo

the Fourier coefficients ¢(p1,...,ps) must again and again become # 0 for arbitrarily large p.
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also a discrete partition thereof into cells is meaningless! Still, it is obviously factually
correct that in macroscopic measurements the coordinates and momenta are measured
simultaneously—indeed, the idea is that that becomes possible through the inaccuracy
of the macroscopic measurement, which is so great that we need not fear a conflict with
the uncertainty relations. How are these two statements, contradicting each other, to
be reconciled?

We believe that the following interpretation is the correct one: In a macroscopic
measurement of coordinate and momentum (or two other quantities that cannot be
measured simultaneously according to quantum mechanics), really two physical quanti-
ties are measured simultaneously and exactly, which however are not exactly coordinate
and momentum. They are, for example, the orientations of two pointers or the loca-
tions of two spots on photographic platesd—and nothing keeps us from measuring these
simultaneously and with arbitrary accuracy, only their relation to the really interesting
physical quantities (g and py) is somewhat loose, namely the uncertainty of this coupling
required by the laws of nature corresponds to the uncertainty relation (cf. Footnote @).

Formulated mathematically, quantum mechanics attributes to the quantities ¢; and
pi, the well-known operators Q; = ¢i--- and Py = %a%k --+ [16], whose lack of com-
mutability (QxPr # PrQp, the difference is, as is well known, ?1) corresponds to the
lack of simultaneous measurability of these quantities [3, [9]. We now assume that two
other, commuting, operators Q}, P}, exist whose difference from Q; (respectively, Py)
is so small that its size is characterized by numbers AQ, and AP, whose product does
not significantly exceed the value i/2 required by the uncertainty relation. (Of course,
it cannot be less than that because of QxP; — P,Q; = 21, QP — P;Q), = 0!) A
somewhat different formulation that achieves (as one easily sees) the same arises from
the following consideration: The commuting operators Q),, P}, must possess a complete
orthogonal system of common eigenfunctions)] denoted @1, o, . ... Thereof we have to
require that in every state ¢, the spreads of Q; and Py are less than AQ and AP,
(where AQy APy ~ h/2). Then a simultaneous measurement of Q) and P}, which must
lead to a state ¢,,, does indeed provide simultaneous information about Q; and Py. By
the way, it suffices to select the orthogonal system 1, 9, ... as described above, then
Q. and P}, can then easily be chosen—after all, it suffices to specify their respective
eigenvalues in the states ¢, (n = 1,2,...), which it is advantageous to take to be the
expectation values of Q and Py, in the state ¢,

SFor example, one may think of the coordinate and momentum of a particle in the sense of the
citations of Footnote  as measured in the following way: On the one hand (coordinate), let the particle
be illuminated by a bundle of light focussed on it approximate position, on the other hand (momentum)
by a quite monochromatic and plane wave bundle of light, with the reflected light photographed after
passing a prism in order to determine the wave length. Of course, the inaccuracies must satisfy the
uncertainty relation. In this way one obtains, on two photographic plates, two spots determining
coordinate and momentum with said inaccuracy.

"For the sake of simplicity, we assume that the actually measured quantities Q). P/ have pure point
spectra, which should be the case if the available volume is finite. The existence of a system of common
eigenfunctions can be proved in the same way as for usual (finite dimensional) matrices [7] [10].

8That is, [* qr len(qr--.qf)day - dgy and 2 [ ol (q1...q5) ¢* (a1 ... qp) dqy - - day.



This plausible assumption can be confirmed mathematically: For any two positive
numbers ¢, ) with en = Ch/2 (where C'is a constant, see Footnote[d)), there is a complete
orthogonal system ¢, s,... such that in every state , the spreads of Q, and Py
are smaller than ¢ (respectively, n)E To specify the ¢, and to prove their properties
requires somewhat cumbersome calculations@ which we do not reproduce here since
the important aspects should be sufficiently clear from the above description.

Thus, we make the assumption about the nature of macroscopic measurements that
simultaneously measurable quantities (with pairwise commuting operators) are being
measured, which are coupled to the primitive and not simultaneously measurable phys-
ical quantities (coordinates, momenta, etc.) just so accurately as allowed by the un-
certainty relations. How to carry this out in detail will be shown in the course of this

paper.

0.3

About the formalism of quantum mechanics in general we say the following. The states
of a system are known to be characterized by the so-called wave functions, complex func-
tions ¢ = ¢(q1,...,qs) defined on the “configuration space”, the f-dimensional space
described by the f coordinates ¢y, ..., q;. The physical quantities are characterized by
the Hermitian operators A, B, .. . The most important operations with wave functions
are: the “inner product”

(WP)=/-~-/30(qh---,qf)ib(ql,---,qu)*dql-~-d<If (1)

(where * denotes the complex conjugate) and the “norm”[

= I\/(WP):\//"'/|30(ql,---,qf)|2dq1-~dqf- (2)

The simplest description of a state by means of a wave function ¢ is obtained in this
way: the expectation value of the quantity A in the state ¢ is equal to (Ag, ). The

90One sees that C' ~ 1 would be the ideal estimate (which exploits all possibilities left by the
uncertainty relation). The author succeeded only in computing C' < 3.6 [Note of the translator: 3 years
later in his book, von Neumann repeated this claim with C' ~ 60, so maybe the bound C' < 3.6 was
incorrectly calculated; see also Section 2.2 of the commentary], but since the value of /2 in macroscopic
(centimeter-gram-second) units is approximately 1028, the difference does not really matter.

190ne should use the wave packets used by Heisenberg [9], exp(— 157 ¢*+ (57 +7b)q)—where we write
q for g, and ignore the other ¢q;,...,qf,sothat Q =¢--- and P = %6% -- - have the means a respectively
b and the spread squares ©? respectively (545)2—with a = /4r/Cei, b = \/4w/Cnj = V/Cr(h/e)j,
0= a/\/a, where 7,5 = 0,41, £2,.... The functions thus defined should be written in arbitrary order
as a sequence and then orthogonalized according to the procedure of E. Schmidt [15]. This yields the
desired 1, @2, . . ..

HTn the following, the terminology and notation follows that of [19]. Everything needed for the
present purposes will be collected presently.

12The calculus with these is outlined, e.g., in [1§].
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specification of all expectation values provides, as it includes the expectation values of
all powers (i.e., the so-called higher moments of a probability distribution), knowledge
of the entire probability distribution of every quantity—and thus a complete statistical
characterization of the system [3], 19].

We also need the statistics of quantities in the system in case that, instead of a single
states o, we encounter a mixture of several states @1, (o, ... with respective probabilities
Wy, Wa, ... Then the expectation value of A is, obviously, equal to Y w,(Ag,, ),
which is advantageously written in a different way. Let us describe, in any complete
orthogonal system, A by a matrix a,, and each ¢, by a vector x, (u,v =1,2,...) [18].

Then
S B = e ol ot = Dan[Swatar]. @
n n oV oV n
so that, if U is the operator with matrix ) w, x,ay,”, this is the trace of AU Thus

the statistical behavior of the above mixture of several states is characterized by the
operator U, on the basis of the rule: the expectation value of A is equal to tr(AU).
We call U the statistical operator of the mixture; one sees that U suffices for describing
the mixture, and it is unnecessary to specify the individual states from which it was
composed.

By the way, it is convenient to introduce a symbol P, for the operator with the
matrix z,x,* (where z, is the vector of the wave function ¢). It is easy to verify
the equivalent definition P,f = (f,¢) ¢ (where f is any other wave function). Then,
U=> w,P,,; in particular, P, is the statistical operator of the pure state (.

0.4

Now we can approach the (quantum mechanical) formulation of the ergodic theorem.
We start by discussing two approaches that do not solve the real problem but will, we
believe, help make the situation clearer and more transparent.

The classical formulation of the ergodic theorem (more precisely, the quasi-ergodic
theorem) asserts the following: A system’s point in phase space will, in the course of its
motion (determined by the differential equations of mechanics), come arbitrarily close
to every point of its energy surface—indeed, the time it spends in any region of the
latter in the long time average is proportional to the measure of that region[q Thus, in
a given state the statistical properties of the time ensemble (corresponding to averaging
every quantity over all times) are identical to those of its micro-canonical ensemble. The

13See [19, 4]. The trace is the sum of the diagonal elements of the matrix; since it is a unitary
invariant, one can talk of the trace of an operator, without specifying a complete orthogonal system.

14As is well known, the measure to be considered is not the (2f — 1)-dimensional surface area of
the piece of energy surface but rather the [infinitesimal] 2f-dimensional volume of a strip between
neighboring energy surfaces, i.e., the integral of the reciprocal [magnitude of the] gradient of the energy
over the region mentioned.—The essential (and often ignored) difference between the two halves of
the above formulation of the quasi-ergodic theorem was emphasized by P. and T. Ehrenfest [5, [6]: the
second half is indispensable for the foundation of the statistical mechanics of Gibbs.



latter is the mixture of all points of the energy surface, with region of equal measure (as
in Footnote [I4)) given equal weight.

Now in quantum mechanics let H be the energy operator, @1, o, ... its eigenfunc-
tions Wi, Wy, ... the respective eigenvalues. A state

Y= Z AnPn (4)
evolves with time ¢ ([be it] > 0, = 0, or < 0) according to the time-dependent Schrédinger

equation to
= Z anelwnt/hﬁpn = Z an(t)gpn . (5)

We first need to scrutinize the concept of energy surface. The |a,(t)]* = |a.|* re-
main constant in the course of time, not only the energy expectation value (Hty, ;) =
>, lan(t)*W,,. Since the |a,(t)|? characterize the entire statistics of energyl'y we can
say: The law of energy conservation in classical mechanics, when transferred to quantum
mechanics, asserts not merely the conservation of the mean energy, but rather the con-
servation of the whole probability distribution of the energy. If we defined a quantum
mechanical “energy surface” in the immediate way by

Z |an|*W,, = const. (6)

n

then the ergodic theorem would be far from valid—after all, there exist infinitely many
constants of motion |a|?, [as|?, .. .. Instead, the “energy surface” should be defined as

la;|? = const.;, |ag|® = const.p, ... (7)
We thus arrive at the question: Let
ap =1 (rp, >0, 0 <, < 27), (8)
so that the energy surface consists of those

Y = ZCL;LQO” with a/, = ren (0 < o, < 27), 9)

do the .
(1) = rpe’Wnt/ften) (10)

come arbitrarily close to all a, i.e., do the W,,t/h + «,, come arbitrarily close to the a,
(modulo 27, of course, and for all n =1,2,...)? And, how long are the relative sojourn
times in given intervals of o/,?7 Put differently: Will W, t/h come arbitrarily close, for

15More precisely: a complete orthogonal system formed of eigenfunctions, i.e., a coordinate system
in which H is diagonal. (We assume that there is no continuous spectrum.)

16For example, because they determine, according to (Hy;, 1) = 32, |an(t)|>W¥, the expectation
values of all powers of energy, i.e., all moments of the energy statistics.



suitable ¢t and modulo 27, to any given collection o], — «,, (for all n = 1,2,...), and
what are the relative sojourn times? According to theorems of Kronecker, for the former
behavior the linear independence of W), /h over the integers is necessary and sufficient,
i.e., the condition that no relation of the form

Wi W,
11—+ ...+2,— =0 11
N h (11)
(n arbitrarily large but finite; x1, . .., z, integers) obtains, except when z; = ... = z,, =
0 [11, 12]. From further theorems of Weyl it follows that in this case also the sojourn
times are correct, i.e., proportional to the product of the lengths of the intervals [21].

However, we have actually asked too much, GSHEHFISESSeneaofheeTgodicthieoren

As we know from Section 0.3, to this end only
agreement between the statistical operators of these two ensembles is needed (while,
beyond that, their “true” composition from wave functions is undiscoverable).

Now ), has the statistical operator P,, and we need to average this, on the one
hand, over all ¢ while keeping the «,, fixed (time ensemble), and, on the other hand, for
t = 0 over all v, (micro-canonical ensemble, where we now write «, instead of o/,). We
want to write Py, as a matrix in the coordinate system ¢y, ¢, . . .; since

Y=Y e ilitenp, (12)

the m,n component of Py, equals

ry iy @ (Wi = W)t/ It (cim —an) (13)

At this point we might think we have proved the ergodic theorem to a satisfactory
extent. However, we cannot be satisfied with this result since it does not mention the role
of the macroscopic. Indeed, we have dealt with a completely and exactly known system,
for which, for example, the energy surface was described by the exact specification of all
|a,|*. Thus, in order to treat the incompletely known systems of statistical mechanics,
we need to further modify the question we are asking]@y

17Tt may seem strange that the condition involves the W,, /A and not the (W,, — W,,)/h, but this is
due to an imprecision in our consideration. A constant factor (of modulus 1) in the wave function is
meaningless (e.g., it drops out of the statistical operator Py), and thus we should have required, what we
asked of the phases W,,t/fi+ a,, only of the phase differences, for example (W,, — W1)t/h+ (o, — 1) for
n=2,3,.... This leads again to condition (III) above, but now for the eigen frequencies (W,, — W1)/A,
n=23...

18 Another hint showing that the theorem just proved cannot be the right ergodic theorem is that
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0.5

This modification must consist primarily in re-interpreting the concept of energy surface
in a macroscopic way, i.e., to extend the micro-canonical ensemble to a collection of
all those states whose energy statistics cannot macroscopically be distinguished from
that of the given state. Under such circumstances, also the agreement between time
and microscopic [i.e., micro-canonical] average should only be required for macroscopic
quantities. This weakening comes together with an essential strengthening that is made
possible only by using the macroscopic perspective.

It is useful to compare this with the corresponding considerations of the classical
theory. There, the above-mentioned theorem, which amounts to a justification of the
statistical-mechanical methods, gets decomposed into two steps as follows: First it needs
to be shown that for every quantity the time statistics coincides with the micro-canonical
one; then that for so-called macroscopic quantities the micro-canonical statistics has
small spread. The first claim is just the presently unprovable classical quasi-ergodic
theorem, the second, in contrast, can easily be proved by means of combinatorial con-
siderations of counting (see, in particular, [5, 6]). However, what we want to call the
ergodic theorem is the above implication of both claims together.

A more precise discussion will be provided in the course of this paper; here we
just want to emphasize two points: First, our formulation of the ergodic theorem will
require that the temporal behavior sketched above actually occurs for every initial state
of the system (every ) without exceptions (classically, one would admit exceptions in
lower-dimensional parts of the energy surface). Second, we emphasize that the true
state (about which we do calculations) is a wave function, i.e., something microscopic—
to introduce a macroscopic description of the state would mean to introduce disorder
assumptions, which is what we definitely want to avoid. Likewise, the energy operator
occurring in the time-dependent Schrodinger equation

0 1
—y = —H 14
at ¢t h @Z}t ( )
(whose solution is ([B])) must be represented in its exact (microscopic) form. (Of course,
this is different from what happens in the definition of the energy surface, as we will
discuss later.) We will now elucidate the conditions that will turn out necessary for the
validity of the ergodic theorem.

0.6

These conditions come in two groups, first those concerning the (microscopic) energy
operator H, second those concerning the partition of the (macroscopic) energy surface

its premise (non-degenerate energy) is too weak: it is still satisfied for a known counterexample to the
classical ergodic theorem! Cf. Section
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into phase cells, and the size of the latter. (What is meant quantum-mechanically by
energy surface, phase cells, and other objects in phase space, will be defined precisely;
at this point it suffice to operate with these terms in the way that was common in

pre-quantum-mechanical theory.

Concerning the energy, we will find that the term differences (i.e., eigen frequen-
cies) must be distinct, and likewise the terms themselves (non-degenerate!)—i.e., if
Wiy, Ws, ... are the energy values then all W,, — W, (with m # n) are distinct and
likewise all W,,. (Though we might even admit infrequent exceptions!) As one can see,
this condition lies, with respect to its strength, between the two conditions found in Sec-
tion [04] [i.e., it is weaker than rational-linear independence and stronger than absence of
degeneracies|. We will convince ourselves in Section B3| that it is a reasonable condition,
in particular one violated by the classical counterexamples to the ergodic theorem (ideal
gas without collisions, radiation in a cavity without absorption) and re-instated as valid
by the known (but only heuristically confirmed) counteractive measures (introduction
of collisions, absorption and emission).

About the size of the phase cells we find the following: the number of states (quantum
orbits) in each phase cell has to be not only very large, but also on average quite large
compared to the number of phase cells. We postpone a more detailed interpretation of
this condition until later and mention here only the following: When we take the limit
i — 0 (i.e., let quantum mechanics tend to classical mechanics) while not changing the
macroscopic measuring technique, then the former number grows unboundedly while
the latter is constant—thus, our condition is satisfied better and better. Its validity is
thus guaranteed at least if the macroscopic measuring technique is much too coarse to
reach quantum effects (so that & is practically 0).

It remains to formulate the H-theorem, which we will prove, too. We can attribute
in an obvious way an entropy to every state ¢, and likewise to its micro-canonical
ensemble;@ we can then study the temporal variation of the former and compare it
to the latter (which is, as one can easily show, always greater than or equal to the
former).

Following the discussion of P. and
T. Ehrenfest of this issue [0}, 6], we see instead the following as the essential statement of
the H-theorem: the time average of the entropy of ¢; differs only little from the entropy
of the micro-canonical ensemble—and since the latter is an upper bound of the former,
we have that the entropy of ¢, will rarely be much less than the micro-canonical entropy.
We will see that the H-theorem holds under the same hypotheses as the ergodic
theorem.
To sum up, in quantum mechanics one can prove the ergodic theorem and the H-
theorem in full rigor and without disorder assumptions; thus, the applicability of the

19Cf. the end of Section [[3], where we will also say more about the relation between this entropy to
that defined by the author in [20].
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statistical-mechanical methods to thermodynamics is guaranteed without relying on
any further hypotheses Of course, this is compatible with the fact that also the
time-dependent Schrédinger equation, on which quantum mechanics is grounded, has
reversibility and recurrence properties just like the differential equations of classical
mechanics [I7], and therefore cannot alone explain irreversible phenomena

0.7

We would like to sketch the relation between this work and other quantum-mechanical
investigations on questions of statistical mechanics and thermodynamics. The papers
of Schrodinger [17], as well as of L. Nordheim [13], and W. Pauli [14] describe the
macroscopic situation by means of disorder assumptions, and therefore lie in a different
alley of research. An earlier work of the author is based entirely on the microscopic
perspective and has the converse goal: To determine the entropy value from assuming
the validity of the phenomenological second law of thermodynamics.

The author would like to express his deepest gratitude towards Mr. E. Wigner for
numerous discussions in which the questions of this article have arisen.

1 Quantum-Mechanical Formulation of the Concepts
of the Gibbsian Statistical Mechanics

1.1

As we have said and justified in the introduction, we take for granted that all macroscopic
observations that are possible at all are possible simultaneously. Thus, their operators all
commute with each other, and so there is a complete orthogonal system w1, wo, . . . of wave
functions that are eigenfunctions for each of them (cf. Footnote[7). Here we expect that
among the wy, ws, ... there are groups of many w, on which every macroscopic operator
possesses the same eigenvalue, for otherwise carrying out all macroscopically possible
observations would allow us to distinguish completely between all of the wy,ws, ... (i.e.,
an absolutely precise determination of the state, which in general is not the case).
These groups we denote {wip,...,ws,p}, p = 1,2,... (replacing the one index n =
1,2,... with two indices p = 1,2,... and A = 1,...,s,)—i.e.,

Thus, instead of the system

20Cf. Schrodinger [17], particularly the last section. Our results allow us to carry out his reasoning in
a compelling way without his “statistical assumption” (i.e., disorder assumption), and thus to reduce
it in full rigor to the ordinary statistical interpretation of quantum mechanics. This also answers
Schrédinger’s question whether quantum mechanics also suffers from an “ergodic difficulty.”

21However, quantum mechanics does know an irreversible elementary process: the measurement. It
is irreversible (see [20], where the definition of this process is given in footnote 21 on page 283), but
whether it is relevant to the irreversibility of reality we leave open. In this work, we do not deal with
measurement.

22 A macroscopic quantity is one whose value can ezactly be determined by means of macroscopic
measurements. Thus, if A can assume all values between —oo and 400, and if it is characteristic of the
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Wip, - -+ Ws,p, any other system wj ... ,w;pm obtained from the former by a unitary
transformation would serve the purpose just as well.
If all states of a group {w1p, .. ., ws,p} get mixed with equal weights then one obtains

a statistical ensemble with the statistical operator

1 1 &
—E,=—) P,,,. (15)

5p % =1

The operator E, does not change when the w, , get replaced with w) , just mentioned,
as one can easily verify. Every macroscopic operator A has the w), as eigenfunctions,
and thus is a linear combination of the P, ~with the eigenvalues as coefﬁcients and
since all wy , with the same p have the same eigenvalue, A is even a linear combination
of the E,, as we note here for future use.

By the way, iEp is, as can be seen from the way it arises, the statistical operator of
the ensemble in which all macroscopic quantities have the values corresponding to the
p-th group (where the s, quantum states have the same weight)—thus, iEp corresponds
to the p-th one among the alternatives concerning the properties of the system that can
be distinguished by macroscopic measurements. Therefore it is the equivalent of the
“phase cells” of the Gibbsian statistical mechanics. The number s, = trE, (tr means
trace, cf. Footnote [[3)) is the number of real (microscopic) states in this cell—its size is
therefore a measure of the coarseness of the macroscopic perspective.

1.2
Let us now consider the energy operator H with the eigenfunctions ¢y, ¢o, ... and the
eigenvalues Wy, Ws, ..., so

H=> W,P,,. (16)

We emphasize that H is the exact energy and not any macroscopic approximation.

In general, the ¢, are different from the w, ,, and H is not a linear combination of
the E,, since the energy is not a macroscopic quantity, as it cannot be measured with
absolute precision with macroscopic means2] With a certain (reduced) accuracy, how-
ever, this is indeed possible, so that the energy eigenvalues Wy, Ws, ... can be collected
in groups {Wia,...,Ws, o}, @ =1,2,... (again we replace the single index in W,, and
©n, n=1,2,..., with two indices, W,, and ,, witha =1,2,..., p=1,...,5,) in such
a way that all W, , with the same a are close to each other and only those with different

macroscopic inaccuracy that only intervals [k, k + 1) (for K = 0,41,+£2,...) can be distinguished from
one another, then only f(A) is macroscopically measurable, with f the following function: f(z) = k
for k <z <k+1 (for k=0,%£1,£2,...). Cf., however, the discussion in Section and Footnote

23 A Hermitian operator with eigenfunctions x1, X2, . .. and respective eigenvalues wy, wa, . .. must be
equal to > w,P,, . See also [19].

24For example, think of the situation of observing an ordinary gas. In principle, of course, an energy
with point spectrum can, under favorable circumstances, be measured with absolute precision: one can,
e.g., decide whether an oscillator is in the ground state or not.
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a (i.e., the full groups) can be macroscopically distinguished. How do we formulate the
fact that we can macroscopically measure the membership of an energy value in a group
{Wias o s Ws,a}?

We do this by means of a trick that we have already mentioned and applied several
times in [19]. Let f,(z) be the function that assumes the value 1 for x = Wi 4,..., Ws, o
(for fixed a!) and is otherwise 0. Thus, f,(H) is a quantity that has the value 1 when
the energy value belongs to the aforementioned group, and is otherwise 0—therefore it
can be measured macroscopically. From

H=> WP, (17)
it follows that
fa(H) =) fa(W)Py, (18)
(cf. [19]), thus
Sa
faH) =) Py, (19)
p=1

and this must be a linear combination of the E,. Now the operator Ziil P,,., and
likewise each E, = > 3", P.,,, are equal to their own squares, and any two different
E, have product 4 —this implies that in the aforementioned linear combination of the

. . . . .. Sa .
E, ecach coefficient is equal to its own square, i.e., is either 0 or 1. Thus, szl P,,.is

simply the sum of some E,, let them be called E;,,...,En, q:
Sa Nq
> Pe.=D Eu (22)
p:l v=1

By taking the trace, this implies

Na,
S, = Z Sua (23)
v=1
Since the product of
Na N,
> E,oand > E,, (a#b) (24)
v=1 v=1

25To prove this, we need to show for two arbitrary but distinct elements ¢, 1 of an orthogonal system
that Pi =P,, P,Py =0. Let f be any wave function, then we have that (cf. Section [0.3]

I
~
S
€
&
AS
I
~

P2f=((f.9)e.0)p @) =Pyf, (20)
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is, according to what we said before, equal to the sum of those E, appearing in both
sums, and since, on the other hand, it is also equal to the product of

Ng Ny
> Py, and Y P, (25)
p=1 p=1

which vanishes, the sum of the common terms E, is 0. Therefore there are none, as the
sum of several E,, i.e., of several P,, , never vanishes 4 Finally, the E, , exhaust the
E, (so far we have seen merely that they re-index a subset in a one-to-one way); to see
this, it suffices to show that

oo  Ng o)
> Y E.=) E,. (26)
a=1 v=1 p=1

The left hand side is the sum of all E, 4, and thus of all P, ., and thus 1 (for a complete
orthogonal system xi, x2,..., the sum of all P, equals 1 and the ¢,, do form a
complete orthogonal system); the right hand side is the sum of all E,, and thus of
all Py, , and thus 1, too (also the wy, form a complete orthogonal system)—thus,
everything is proved.

We thus have that the E,, and s,, witha =1,2,..., v =1,..., N, is just a different
way of indexing the E, and s, with p = 1,2,.... Correspondingly, we write wy,, for
wyp- We introduce

Sa Na
£ A=YP,. =Y E,.. (27)
p=1 v=1

We see that S%Aa is the mixture of the states p1,,...,¥s, . With equal weights, or,
1
’ SNg,a
corresponding to phase cells) with weights proportional to s14, ..., SN,.q-
+A
a

The analoga of these concepts in the Gibbsian theory are, again, obvious: o
corresponds to the energy surface, i.e., to the micro-canonical ensemble, IV, is the number
of phase cells E,, on the energy surface, and S, = tr A, is the number of true states
(i.e., of stationary quantum orbits) on it.

The macroscopically possible energy measurements thus decompose the totality of
conceivable states into the energy surfaces A, a = 1, 2, .. .; further energy measurements
(which would resolve the A, into the ¢,,, p = 1,...,S,) are not possible with these
means. However, other measurements are macroscopically possible, and they must refer
to quantities whose operators do not commute with H, i.e., which cannot be measured
simultaneously with the (microscopic) energy. Classically speaking, they must refer to
non-integrals of motion, i.e., to quantities that change with timed These measurements

alternatively, the mixture of the mixtures fELa, . En, . (considered above as

26From Py + Pyr + ... = 0 (with o', w”, ... pairwise orthogonal) we obtain by multiplication with
P, the equation P, = 0, which is certainly false.

2"By inspecting the definition of P, as a matrix in Section [I3] we see that this is identical to the
usual form of completeness relation. Cf. also [19].

28For example, in a gas enclosed in a box K, the total energy of the molecules in the left half of K
can be measured macroscopically with certain accuracy—but is not an integral and thus varies with
time.
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decompose the energy surface A, into the phase cells E,,, v = 1,..., N,. A further
decomposition (resolving the E,, into the wy,q., A = 1,...,s,,) is macroscopically
impossible.

We thus have that the quantity N, is a measure of the extent to which the macro-
scopic methods of measuring are adequate for quantities that cannot simultaneously be
measured with energy—i.e., the extent to which the inaccuracy of macroscopic energy
measurements is determined by the uncertainty relations. The magnitude of the s, ,
(i.e., of the phase cells E, ), on the other hand, is a measure of the inaccuracy of the
macroscopic methods as such, i.e., as a consequence of their imperfection. The inaccu-
racy due to N, gets compensated by observations of non-integrals; it is not a weakness
of our measurement apparatuses, whereas the inaccuracy due to s, , is. Finally,

Na
Se=> Sua (28)
v=1

is a measure of the product of both, i.e., for the total, actual uncertainty of the energy.

1.3

Suppose now we are given an arbitrary state i) (where the wave function ¢ is normal-
ized, i.e., ||¢]|> = (¢,9) = 1). The probability that macroscopic measurements on a
system in this state will yield the values corresponding to the phase cell E, , is, accord-
ing to the known rules, the sum of the transition probabilities to the eigenfunctions

Wias -« s Ws, e constituting E, ,. Thus, it is
v,a ) Sv,a
D@ o = (Puy,, 0, 9) = (Evath, ¥). (29)
A=1 A=1

In words, this is how strongly the cell E,, is occupied in the state w Likewise, the
probability of the the energy value to belong to the group {W,, .. } is given by

Sua

Sa Sa
ST1W 0pa)]” =D (P, 0, 0) = (Bath, ). (30)
p=1 p=1

Thus, it is the occupation number of the energy surface A,. We note that, in agreement
with these concepts,

i( E, o) = (Bath, ) (31)
Z a'l/) ’17/) @Z)ﬂ/}) =1. (32)
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Now we are ready to define the micro-canonical ensemble pertaining to the state
¥ by specifying its statistical operator. If one (A,1,1) were 1 and the others O,@
we would of course have to take the statistical operator —A considered already in
Section AP But if several (or all) (A1), 1)) are nonzero, we . define it to be the mixture
of the S%Al, S—2A2, ... with weights (A1, ), (Asth, 1), . ... Thus, the micro-canonical
ensemble has the statistical operator

- Aa b)
U, = ; %Aa. (33)

Of course, this definition is really justified only afterwards by its success, i.e., by the fact
that only with this definition, the ergodic theorem and the H-theorem hold. (Practically,
of course, all but one (A,1,1)) are very small.)

It remains to define the entropies of ¢ and U, (of the state and of the corresponding
(virtual) micro-canonical ensemble). The expressions for entropy given by the author in
[20] are not applicable here in the way they were intended, as they were computed from
the perspective of an observer who can carry out all measurements that are possible
in principle—i.e., regardless of whether they are macroscopic (for example, there every
pure state has entropy 0, only mixtures have entropies greater than 0!). If we take
into account that the observer can measure only macroscopically then we find different
entropy values (in fact, greater ones, as the observer is now less skilful and possibly can
therefore extract less mechanical work from the system); nevertheless, the theory can be
set up also in this case. How to do this has been discussed by E. ngner. the formulas
for the entropies S(¢), S(Uy) of ¢ and Uy, read 7

iz (E, 6. ) In Erat¥) wal v (34)
S(U) =~ Y (A v) ln%. 3

By the way, these entropy formulas are identical to the usual ones based on Boltzmann’s
definition of entropy (and Stirling’s formula), as one sees by noting that the (E, ,¢, )
(the (A,1,1)) are the relative occupation numbers of the phase cells (of the energy
surfaces) and the s,, (the S,) are the numbers of quantum orbits therein, i.e., their
so-called a-priori weights.

29Note that all our “occupation numbers” are, by their nature, non-negative.

30In [19], general reasons are provided for the conclusion that always this statistical operator belongs
to that ensemble defined by requiring merely that the energy lies in the a-th group.

31Mr. E. Wigner has communicated his hitherto unpublished results on this topic to the author orally.
Here we shall use only those formulas necessary for the purpose at hand, while we need not enter into
the general theory.

32We have omitted the usual factor k (= Boltzmann constant), and thus introduced as the unit of
temperature “erg” per degree of freedom. [1 erg = 1 g cm?/s2 = 1077 J]
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2 Implementation of Proofs

2.1

The temporal evolution 1y of the initial state 1) is determined by the time-dependent
Schrodinger differential equation

0 1
= ~ = —-H
Vo=, = HU (36)
with H the energy operator,
oo Sa
Ho S WPy @
a=1 p=1
Thus, if
oo Sy
V=D ™ Ppa (38)
a=1 p=1
with r,, > 0 and 0 < a,, < 27 then
oo Sa
=D rpac Mty (39)
a=1 p=1

We introduce the abbreviations

Tya = (Eu,a¢t7 7vbt> y  Ug = (Aawt7¢t) = (Aawﬂ/}) (4())

(the last two expressions are equal because

Sa S(L
(Dot ) =Y (Py, U 0) = > | (Y1, @pa)| Zr,m (41)
p=1 p=1
does not depend on t.) As we see,
Na
Z LTya = Ugq , (42)
v=1
> ug=1, (43)
a=1

Z,, depends on ¢, u, does not From [our discussion above at] the definitions of
entropies we know that the z, 4, u, are non-negative and that

oo  Ng [e%)
—szmm%, S(Uw):—Zualn%. (44)
a=1 v=1 v,a a=1 @

33Thus, the micro-canonical ensemble [i.e., density matrix] Uy = > oo | (uq/Sa)A, does not change
when ) is replaced with ;.
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Since the sum of all z,, (or of all u,) equals 1, they all lie in [0,1], and thus both
entropies are always non-negative. We now discuss more closely their magnitudes.
We note 0 < z,, < u,; we replace x,, by a variable z and assume first that

Sq
- 1‘ <1. (45)
Sp,alla

2s .
0<2z< Su’aua, ie.,
a

Then

B P :—Sy’aua<1+- S z—1:><ln%+ln(1+[ S z—lD) (46)

a Sv,alaq

_ teatta (g [ e Z_l:)(m@p S, 1]

Sa Sp,alq Sa LSy,alq
1 W 2 1 . 3
——[ 5 z—l] +—[ 5 z—l] —+...) (47)
2 Sp,allg Sp,allg
Spally ; U Sy.qll u S,
_ _°va al_a_ v,a a(l_a 1)|: a _1:|
Se S s e T s
Syl S, 2 Syl S, 3
- el [ Do p ]y e |2 o] o (48
1x25, [s,,,auaz + 2 x 38, s,,,auaz + (48)
Since 1 1
o=1 4
1x2 * 2x3 i ’ (49)
the sum of the absolute values of the last terms is no greater than
Syalla [ S, 2
v,aWa a - 1] ’ 50
S, [swuaz (50)

and we can thus write

z

<

'—S”’aua In 2o _ <1n Yo | 1) [z — S”’aua] + zIn (51)

[ S, S, . [Z - S”’“““T

S51,alq Sa

Sv,a

In order to prove this also for the other values of z, we compare the left hand side
(without |---|) with half of the right hand side. For z = s, ,u,/S, they both vanish,
and their derivatives are in general

Uq z . Sa
- (ms—a + 1) + (1n o 1) =l =t (52)
and g g
a 81/ CLu[l a
- — = —1. 53
smaua[z Sa ] Svatla (53)
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Obviously, the former is always less than or equal to the latter and % 0 when

Sv,allg

Sa

(54)

s =
<

Thus, the left hand side of (BII), while always non-negative, is = than half the right

hand side of (EI) for z as in (B4]). We thus have in general that

AV

S U U S z S, Syallg]?
o<yt (1l ) [o e, ]y P B [ swate]? (o
R U A G A Il R A

Now we set z =z, , and sum over v =1, ..., N,; since
N, Nq
Zsu,a:Saa Zzu,a:uaa (56)
v=1 v=1
we obtain that
U N T Noo g Syalle]?
0< — al Ya ya]- v,a < a |:Va_ v,a a:| . 57
= n5a+;x’ nsu,a_;Su,aua . Sa (57)
If we sum also over a = 1,2, ..., we obtain that
>0 Mo Sy,qU
s -swsEE S b

This estimate provides an ansatz for proving the H-theorem. We now proceed to
the ergodic theorem and find that it requires a bound on the same expression.

2.2
Let A be a macroscopically observable quantity, i.e.,
oo Ng
A=>"> n.Ea.. (59)
a=1 v=1

The wy, , of the phase cell E,, are eigenfunctions of A with eigenvalue 1, ,—i.e., 7,4
is the value of A in the phase cell E, ,. Thus, A has the following expectation values in
the state v, and in the micro-canonical ensemble U,:

oo Ng oo Ng
Awta ¢t Z Z nu a v a¢t7 wt Z Z nu,axu,a ) (6())
a=1 I/Olo N Ooa 1 v=1
(AUw —tI‘((ZZﬁVa l/a) (ZZ )) (61)
a=1 v=1 a=1 v=1
oo Ng
= Zny,a—s”gu“ . (62)
a=1 v=1 a
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(The number of terms gets reduced by the fact that E,,E,, = 0 except when v = p
and a = b, in which case E, ,E, ;, = E, , has the trace u,,.) We denote the values (G0)
and (62) by Ea(v) and Ea(Uy). Using the Schwarz inequality, we can estimate:

(Ea(t) — Ea(Uy))* @fﬁqm—%ﬂf (63)

a=1 v=1

[e'e) Na 2
( /Suaua / xm B Suaua ) (64)
a=1 v=1 Svalla
Sp,allg > Su,aua 2
(2; 2; 2) (Z 22: T [0 = ) (65)

The first factor we abbreviate 7?; since

SI/CLu[l
i >0 66
>0, (66)
20 Ne S,ql
>0 gL (67)
a=1 v=1 a
o0 Na Sy.ql
SO g =, (68)
a=1 v=1 Sa

this is a weighted average of the values 773,& of A%, in fact the micro-canonical average:
after all, U, is the mixture of the (1/5,)A, (a =1,2,...) with weights u, and thus that
of the (1/s,4)Eya (a =1,2,..; v =1,...,N,) with weights s, qu,/S,, and A? has, as
we know, the value 773,11 in (1/s,4)E, .. Thus, 77 is a reasonable measure of the order of
magnitude of the quantity A. We thus have that

oo  Ng

(Eav) — Ea(U))* <230 >

a=1 v=1

[sua = ssur (69)

sl/ aua

2.3

Now we average over time, denoted by M;. We thus obtain that

M{IS(U,) = S} < Mt{ii o v SSU]Q} (70)

a=1 v=1
_92 * S Sp,allg 2
M, { (Ea() = Ea(Uy))"} < ° M, 2.0 [%,a— 5 } - (T
a=1 v=1 v,a*%a a

Thus, ergodic theorem and H-theorem will both be established when we have shown
that the M;{---} on the right hand side is small uniformly for all initial states ¢ (i.e.,
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all 7,4, ) with D07 Zp_l 2o = ¥|I> = 1). (Note that while z,,, depends on t, 7,4,

and a4, the u, depend only on r,,, and everything else is constant.)

In order to show this we first compute a:l,ya

LTya = (Eu,a¢ta wt) (72)

co Sy
(ZZT e Wnstiang, o

b=1 p=1

co Sy
»y rpybez(wp,bt/map,b)%yb> (73)

b=1 p=1
Sa '
= 3 rparaae (Voo 0 (€, 0,0 ) (74)

po=1
Sa
Thus, using ) 2, = u,
p=1

Sa

Sv,alla i\ (Wp,a=We,a)t/ht(0p,a—s,a
p,o=1
pFo
S s
X (EvaPpas Poa) + Z rz,a{(Eu,aSO/J,a? Ppa) — Sya} - (75)
p=1 “
forp#o: W,-W,#0, (76)
forp#o,p#oc: W, —W,)—= Wy —W,)#0 (77)

unless p = o/, 0 = o’'—i.e., if for every fixed a all W, , (p = 1,2, ...) are distinct, and so
are all W, , — Wy, (p# 0, p,oc =1,2,...)—then we obtain that

(o ) 35

p,o=1

p#o

Sa 9
+ (Z 7“’2, a{ (EV aPp,as Pp,a ) SSV@ }) . (78)

p=1

34The number of terms gets reduced by the fact that (Ev,a®pbs Poc) = (¢pbs Evaoc) = 0 unless
a = b= c. It suffices to show E, s, = 0 for a # b, or (because of E, ,A, = E, 4, see Section [[2))

that Ay, p = 0. This follows from A, = Z;S‘;l P, ., since o, is orthogonal to all ¢ 4.
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We now set

Sa 2
11)1’58;}5 ( ‘ (Eu,a@p,ag @U,a)‘ ) = Mu,a > (79)
pio
({8 )~ %)) =N (30)
rilzalx V"ISDpva’ (pp,a Sa - v,a )

where M, ,, N, , are constants, i.e., independent of ¢, r,,, 4, and thus of ¢,. Since
Sa.
17’p7a = U4, we have that

p:
Syalla]? S Sa 9
Mt ( |:$y,a - ;S, ] ) = Z Tiari,aMV,a + (Z 7’27(1\/ Nl/,a) (81)
@ p,o=1 p=1
pFo
< u?z(MV,a + Nu,a) ) (82)

and thus

SN Syalla]? X\ X Syt
MY e[ = <Y M, N (8

S
a=1 v=1 a=1 v=1 °“va

Because of > u, = 1, this is
a=1

Sa
(M0 + Ny, (84)

a=1,2,... Su.a ’ ’
v=1 )

where it suffices to take the maximum over those a for which u, # 0, i.e., whose energy
surfaces actually occur in the micro-canonical ensemble. Thus, we will have reached our
goal when we can prove, for these a, that

Na

Sa

Sv,a

(M, +N,,) (85)

v=1

is small; in fact, our result will then hold for all of these v, as the expression (85) is
constant, i.e., independent of ¢ (and t, r,,, ®,,)—it only involves the E,, (and thus
indirectly S,, Nu, Sp.qa, B, and the wy,,). In order to bound the expression (8H), we
need to bound the M, , and N, ,.

24

We regard H (and thus the W, , and ¢, ,) as fixed (obeying (76]) and (IZZI)), as well as
the Su, Ng, Sua, and A,; we merely vary the E, ,, within these boundaries. That is, we

35These conditions could be relaxed slightly. We could dispense with [(76), i.e.,] the distinctness of
the W, , and demand the following of W, , — W, , [instead of (77)]: it be possible to partition the set
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vary the orthogonal system wy,, (¥ =1,...,Ng; A =1,...,5,,), subject only to the
condition

No Sva
Z Z wa,u,a =A,, (86)
v=1 A=1

and set o

Evo=» Py, (87)
A=1
for v =1,..., N,. Note that all such orthogonal systems w ,, arise from one of them,

say Wy yq, Dy unitary transformations (in nyil 5,4 = S, dimensions since we keep a
fixed). (Think, for example, of the definition of the P, as matrices in Section [0.3)

Then the M,,, and N, , depend only on the wy , o; not for every choice of the latter,
in fact, they are as small as we need them to be (and no reasonable condition on S,,
Ny, Su,q would help with this). For example, if the wy ,,, coincide with the ¢,, (where a
is fixed, note that there are S, of each), one sees that every (E, .¢).q, ©p.q) assumes [for
some p| the value 1 among others, and therefore

S 2 1
N,,a><1—ﬂ> > - 88
oz (1-28) 2 (53)

(provided that, as is always the case, s,, < %Sa for all v), and therefore

N,
- a 1 Na
5 (M, +N, ) > Ny X2X —=—, (89)
* Sua 4 2

v=

thus arbitrarily large if N, is large. The unfavorable result in this case arises, of course,
from the fact that this choice of w), , does not represent well their physical meaning:
here, the E, , have the same eigenfunctions as H and thus commute with H—which we
expected not to be the case (cf. Section [[2))!

On the other hand, this behavior is singular and exceptional, and for the overwhelm-
ing majority of the relevant systems wy , , we find the right order of magnitude for M, ,
and N, ,. But before we prove this, we would like to get an idea (in an inexact way!)
of what to expect of M,,, and N, , in the best case. To this end we proceed as follows.
Instead of averaging

My’a = n:fétx (‘ (EMaQOp,a, @o,a) ‘2> ) (90)

p,o0=1

pFo

Sa Sv,a 2
NV7H‘ = m§X<{(EV7a¢p7a7 (pp7a‘) - } ) (91>
p=1 Sa

of all pairs p,o with p # o (where p,o =1,...,5,) into k groups in such a way that within each group
the W, o — W5 o are pairwise distinct—if k is a fixed number for each a and the conditions on the size
of the S,, N,, and s, , that we will specify later are satisfied to a sufficient extent then our conclusion
is not affected. That is, it does no harm if our conditions (76) and (7)) are violated in few cases. We
do not give further detail. (In particular, to drop (Z6) does not gain us much, as W, , = W, , and
Wy o = W o together imply that W, o — Wo o = Wy o — Wor 4.)
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over all possible systems wy,, (i.e., of determining which values are predominantly
assumed; the definition of the averaging procedure will be explained in the appendix;
see also the discussion in Section B.]), we average the

}(Eu,a(vpp,aa @U,a)‘z (p#o,po=1,...,5) (92)
Spa)? _
{(Brappas Ppa) — < bo(p=1....8) (93)

themselves and then take the maximum. That is, we replace the mean of the maximum
by the maximum of the mean—this leads to wrong, in fact too small (i.e., too favorable)
numbers, but may suffice for the purpose of a first orientation.

As will be shown in the appendix, the averages of

2 Sv,a 2
}(EV,aSOp,aa Soa,a)} (P # U)a (EV,a‘Pp,m Qpp,a) ) {(Eu,asppﬂa @p,a) - g } (94)

are equal to, respectively,

Su,a(Sa - Su,a) Su,a Su,a(Sa - Su,a)

So(S2—1) ' S, 8%(S.+1)

(95)

and thus, if (as is the case in practice) s, , < S,, approximately equal to, respectively,

Sv,a Sv,a Sv,a
Sz’ 5, Sz (96)

For M, ., N, , we tentatively insert s, ,/ Ss, which yields

N, N,
“ S, “1 2N,
M, +N,o) =2 & =22 97
;Sm( atNua) ;Sa S (97)

This is small when N,/S, is small, i.e., when

>

S

v= oo Sa
N (%8)

is large. That is, the s,, (i.e., the phase cells) must be large on average. This result is
very reasonable, and we thus proceed to considering the correct average of M, ,, N, ,
over the wy 4.

2.5

For the average of M, ,, N, , over all wy ,, with
Ng Sv,a
Z Z Pw/\,u,a = Aa (99>
v=1 \=1
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we will find in the appendix the respective upper bounds

InS, 95,4105,
Se S2 ’

(100)

We see that they are S, In S, /s, , times (respectively 91n S, times) larger than the values
used in ([O7) (keep in mind 1 < s, < S,); in particular, the first bound is much worse
than the second. It is possible that our bounds can be improved considerably and can
get closer to the values of the previous section—we emphasize this so that readers get
the right picture of the conditions on the sizes of S,, N,, and s, , that we will find: they
are certainly sufficient but perhaps not necessary.

By inserting the above expressions, we find the average of

Na

Sa
. (M, .+ N,,) (101)
—1 ‘va
to be N N
XS, /In S 9s,.1n.S, 9N, < 1
< a a v,a a — 1 Sa (_CL ) . 102
< G ) = (g e 102
We introduce the arithmetic and the harmonic mean of the s,, (v =1,..., N,):
S Iy, 5 1 15h1 (103)
a_Nauzl e Na’ ga_Naulsu,a.
Then the expression (I02)) equals
9 N,
(In $,) (= + g—) . (104)

Because of 5, < 5, and N, > 1 (which amounts to the justified assumption that the
energy surface contains many phase cells), this is approximately equal to

N,
(InS,)—. (105)
When is this expression small?
Certainly we must have that s, > §, > N, and thus Ins, > In N,, so we can replace
InS, =Ins, +1In N, by In§,. Therefore, the condition is:

N, N, 1
(11’1 ga):_ < 1 or = T — (106)
Sa Sa In s,

ie.,

Na g 1

* Sy Ins,

(107)

v=
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This means that the s, , must be quite large when compared to their number N, (i.e.,
the phase cells must be large compared to their number on the energy surface), and not
merely, as assumed in Section 2.4], large compared to unity. We will investigate later
what exactly this means for the distribution of the s, ,.

3 Discussion of the Results

3.1

We sum up the results so far. We have shown:

Let 1 be an arbitrary state, v, the state arising from ¢ after time t (% 0), Uy its
micro-canonical ensemble (see Section [[3]), H the energy operator, W, , its eigenvalues
(@ =1,2,...; p=1,...,5,; only those with distinct a’s can be distinguished macro-
scopically, see Section [[L2)—both ¢ and H are the exact (rather than the macroscopic)
expressions. We assume of H that (for fixed a) all W, , are pairwise distinct, and so are
all W, , — W, p # o, i.e., that H has, within a macroscopically inseparable group of
terms, no degeneracies and no resonances with an (imaginary) second equal system
(Infrequent violations of these prohibitions can be tolerated.) Then we obtain, in the
time average, for the expectation value of any macroscopic observable A and for the
entropy:

Nq
Mt{ (EA(UdJ) - EA(¢t))2} < 7_72 agll‘:i;’( (Z; j(; (M, + Nu,a)> ) (108)

Ne g

WS~ S} S me (3 T 4N ) (o)

(Cf. Section 2.3} it suffices to take the maximum over those a whose (macroscopic)

energy surfaces occur in the micro-canonical ensemble Uy, (i.e., u, = (Ay1, %) # 0)—in

practice this is usually just one a. 72 is the micro-canonical average of A% and thus a

measure of the order of magnitude of the latter.)

The ergodic theorem and the H-theorem hold without exception (i.e., for all ¥) if

Na

Sa

1 Sv,a

(M,,, +N,,) are small. (110)

v=

36Namely, when Woa—=Wes =Wy o—Wess o then [the product of] the state ©p,a in the first system
and the state ¢,/ , in the second system has the same total energy as [that of] ¢,/ , in the first and
©q,a in the second.

25


Sergio Ciuchi



About the validity of this condition, which involves, apart from S,, Ny, s,, (and A,),
also the wy ,, (in the M, ,, N, ,), we can say this: If

N, N,

11 e S,
A ) 111

25, S s, (S N, &% Na) (1)

i.e., if the phase cells E, , are large compared to their number on an energy surface A,,
then (I10) is satisfied for the overwhelming majority of the wy , ,—i.e., the average over
Wxva Of Z,]/Vil(Sa/sy,a)(M,,,a +N,,) is small P71

The real condition (II0) for the validity of the two theorems can be violated also
when (III)) holds, i.e., also in this case the macroscopic technique of measurement (the
Wapa) can be chosen in such a way that the two theorems do not hold. However,
for the overwhelming majority of the macroscopic setting, both theorems hold without
exceptions (i.e., for all ¢» and A).

3.2

Let us study (III) more carefully. If all s,, (for a fixed a) were of roughly equal size
then (I11I) would amount to N,/s, < 1/Ins, or §,/Ins, > N,—that is, just a little
more than the condition 5, > N,, which is the statement that the phase cells are large
compared to their number on the energy surface. If, on the other hand, the sizes of the
S, are substantially different then we need to be very cautious: already a single s, , that
is not > 1 will have the effect that > (1/s,,) is not < 1, and thus that our condition
(I11) is violated. On the other hand, the s,, are very different from one another, as
Ins,, is to be understood as the entropy of the mixture (1/s,,)E,, characterizing a
general system in the phase cell Ey,a@—and it suffices to recall the situation in the
theory of gases to appreciate that one energy surface will usually contain phase cells
with very different entropies. (This fact makes the H-theorem a relevant statement.) If
the greatest difference in (macroscopically perceptible) entropy among the cells is o, so
that always

‘ln Sp4 —In sma} <o, (112)
then
Sv,a Z gae_o (113)
and N
<1 N,
< & (114)
=1 Sv,a Sa
which leads us to the condition .
L > e’N,. (115)
Ins,

3TNote: what we have shown is not that for every given ¢ or A the ergodic theorem and the H-
theorem hold for most wy , , but that for most wy ., . they are universally valid, i.e., for all 1 and A.
The latter is, of course, much more [i.e., much stronger| than the former.

38This follows from our considerations above or, alternatively, from Boltzmann’s definition of entropy,
as the phase cell E, , contains s, , states.
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This relation shows that no danger arises: since the smallness of h affects the left
hand side (because 5, — oo as h — 0, see Section [0.6]) but not the right, (I15]) will
normally be satisfied. We believe that further discussion is not necessary.

3.3

It remains to discuss the significance of the conditions (7€) and (77)) on the eigenvalues
of H by exemplifying them using the known classical examples and counterexamples to
the ergodic theorem and the H-theorem.

Let K be a box in which N corpuscles ki, ..., ky move around, i.e., a gas; we make
one of the following two assumptions: either

«) that there is no interaction between the particles, not even collisions (i.e., that
they pass through each other); or

B) that there are interaction and collisions.

confrastoneiexpectS EhefheoremsOmold (The situation is completely analogous for

radiation in a cavity with reflecting walls.) How can this behavior be understood from
the perspective of our conditions?

Since the S,, N,, su4, and E, , are hardly affected by the difference between o and
[, the condition on H must be relevant. Let us first consider each particle on its own
in K, and let its energy eigenvalues be 1,9, .. NE| Then, the energy eigenvalues of the
total system in K are, in case «, the expressions of the form

f: 2,Ey (116)
v=1

with 2z, = 0,1,... and Y 2 z, = N, while in case § they are slightly modified—the
less so the weaker the interaction is. The identity of the particles would lead in general
to an N!-fold “permutation degeneracy,”@ and thus to a violation of the first condition
(76) on the energy eigenvalues, but since either Fermi-Dirac or Bose-Einstein statistics
apply, i.e., since only wave functions that are anti-symmetric respectively symmetric
are admissible [8 2], these degeneracies disappear Thus, no such difficulty arises.

39We assume that [the particles] k1, ..., ky are identical and in principle indistinguishable. If they are
distinguishable then every [particle] k,, (n = 1,..., N) possesses a different term spectrum e,1,€n2, . . ..
The situation is similar to the one we are describing, except that the danger of degeneracy vanishes; o
still conflicts with the second condition ([T7) on the eigenvalues of H while § does not.

40In the case . In the case 3, the degrees of degeneracy are the degrees of the irreducible represen-
tations of the symmetric group of N elements. Cf. [24] 25| [26].

41Tn the case of Fermi-Dirac statistics, only z, = 0,1 are admissible, but this does not affect our
considerations.
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However, in the case o numerous relations of the type excluded by the second condition

(77 hold:
(€1+53+...)—(52+€3+...):(51+€4+...)—(52—|—€4—|—...) etc. (117)

In the case (3 this does not happen because the four above terms of K will be perturbed
in very different ways, and, obviously, the absolute magnitude of the perturbation (i.e.,
of the interaction) does not matter.

Thus, it is the behavior with respect to the condition ([{7]) that constitutes the reason
for the different character of o and f.

A Appendix

Al
The properties used in Sections 2.4] and of the distributions of

2
|(Evapar Poa)| (p#0) and (E,o@pas ¥pa) (118)

need to be established. But first we need to explain the sense in which we speak of a
statistical distribution.

As we have pointed out in Section 2.4] everything that depends on E,, ultimately
depends on the wy ,,, and the average we have in mind is the average over these wy , 4.
Since S,, Ny, Sy, and A, are given, they are bound to the condition

Ng Sv,a

>N P, =4, (119)

v=1 \=1
and determine, in turn, the E, , according to

Sv,a

Z wa,u,a = Eu,a . (120)
A=1

We have also mentioned that all such [orthonormal] systems can be obtained from one of
them, say Wy, , by unitary-linear transformations. Thus, if we choose @) , , in whichever
way, we can equivalently say that we average over the set of the unitary matrices in
Zivil Sya = S, dimensions; they map the @) ,, to the wy,, (a is fixed!). We should
denote these matrices by {¢ A x. }, using for their rows a double index A, v and likewise
N, v/ for their columns, corresponding to the notation wy,, and @) ,, and the relation

Ny Sv,a

Wi v,a = Z Z g)\,l/\)\’,u’ w)\’,u’,a . (121)

N=1v'=1

We prefer, however, to introduce for them the notation &, (p,p" = 1,...,5,). Now
we need to explain how to average over the set of the S,-dimensional unitary matrices

{fp\p’}'
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We wish to average in a way that does not prefer any reference frame @, , to the
others. If @), , is another such reference frame and

Sv,a

w)\,l/a Z Z 5)\ VN, /Cd)\/ Via s (122)

N=1v'=1

(we also rewrite & Aw|N,p A8 §p| ) then the matrices {&,/} and {{/, /} that represent the

ple’
[orthonormal] system w , , relative to Wy, , respectively w Av,a are related according to

{gp\p} = {gplp’}{gp\p’} e, § = 55]7 Le

Sa
i =D oo - (123)
p'=1

Thus, the procedure of averaging must be invariant under transformations of the above
form {&,} — {&),,/} (for every fixed unitary matrix {{,,/}) [i.e., under right multipli-
cation]. Such a procedure of averaging over the unitary group does exist, is uniquely
determined by the above requirement, [amounts to integration relative to a measure now
known as the Haar measure on the unitary group] and has been specified by Weyl [22].
His general formulas we will not need, as we can reach our goals just by means of the in-
variance properties of this averaging procedure. We mention that (as shown in [22]) this
averaging procedure is also invariant under [left multiplication, i.e.,] the transformation

{0} = {€),/} defined by the relation {¢/) ,} = {5, H&p} [ie, & =&, e

&olo Z EplpEot 1ot - (124)

Second, for our calculations we simplify the notation. Since the order of the v =
1,..., N, is without significance, it suffices to consider E;,. When replacing the two
indices A, v by one index p we can arrange that (A, 1) corresponds to p = 1,...,51,.

Furthermore, we select the reference frame @y, ,: let it be the system of the ¢, , (where
we have also replaced the indices). We thus have that

S1,a
(Era®pa: Poa) = D _(PurnPpas Poa) (125)
T=1
Sl,a S1,a
= (Ppa Wra) (Wra: Poa) Z&Tp&a. (126)

T=1

Finally, we omit the unnecessary indices v, a, so that S,, Ny, 14, Ba, E1.0, ©pas Miq, Nig
will be written as S, N, s, A, E, p,, M, N

42Note of the translator: Note the difference between N and N: N = N, is the number of macro-
states, N = N, , is one of the error bounds.
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Our task is now: As {{, ,} runs through all S-dimensional unitary matrices, inves-
tigate the distributions, with respect to the [measure corresponding to the| averaging
procedure sketched above, of

(€peo)l’ = S| (07 0) (127)
=1
and ,
(Ep, 0p) = Z €50l - (128)
=1
A.2

We begin with an auxiliary reasoning. We determine the distribution of the values of

> a?, (129)
p=1

as the vector {x1,..., g} runs through the unit sphere
S
d =1, (130)
p=1

at first with real z,. That is, we determine W (u), where W (u)du is the (geometric)
probability for

w< Y 2l <u+tdu (131)

p=1

0<u< 1) Simple geometrical considerations that we need not reproduce here show
that W (u) is proportional to

us/2—l(1 o u)(S—S)/Q—l ’ (132)
where the proportionality factor needs to be determined from
1
/ W(u)du=1. (133)
0

Now, if we allow x1,...,zs to be complex and consider

u < Z |:)3p|2 <u+du (134)

p=1

43This amounts to determining the surface area of the s-dimensional calotte on the S-dimensional
unit sphere.
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instead of (I31]) and
S
dolwl =1 (135)
p=1

instead of (I30), then we realize that the problem has not changed as we can regard the
real and imaginary parts of the x, as real Cartesian coordinates. Thus, we only need to
replace s, S by 2s,2S5, so W(u) becomes proportional to

w1 — )5 (136)

and the proportionality factor can be determined from the normalization condition to
be

—1)!
(s — 1()!525 —1)3 — (137)
Therefore,
the average of (zs: |Ip|2>n
p=1
- /01 (s — 1(>i; —1); —yp T () (138)
T s 1()?(6? —1)5 ~1)! / (= )5 (139)
(S —s—1)!
- ((;i 11)) ((fginn_-lf) : (141)
A.3
We return to the unitary matrix &, and introduce the abbreviation
€po = ZS: & oSro - (142)
=1

For the reasons described in Appendix [A] all e,, (p # o) have the same probability
distribution, and likewise all ep,p
In

= |6, (143)
T=1

only the p-th column of {{,,,} appears, over which can be averaged in the same way as
we averaged over the unit sphere in Appendix [A.2] [i.e., whose distribution is uniform

44The interchange of columns and that of rows belongs to the transformations there [under which
the Haar measure is invariant].
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on the unit sphere] (this follows easily from the invariance properties of the averaging
procedure). Thus (denoting the average by ),

s 2\ S(s+1)
M(epp) = g M(e,,) = S(5+1) (144)
(e 5)) =) = Foomie) + 35 (145)
. 3(3 + 1) s° _ S(S — 3) (146)

T S(S+1) 52 S(S+1)°

Furthermore, E? = E implies

S S
Cpp = Z|€po|2 = eip+Z|€P0|2’ (147)
5
Due to the equality of the M(|e,,|?) (p # o), we have that

M(Jeyo?) = = (M(e,,) — M(e2,)) (148)

S—1 pe
1 /s s(s+1) _ s(S —s) (149)

:ﬁ(E_ 5(5+1)) S(S2—1)°

The averages used in Section [2.4] have thus been determined in agreement with the
values used there.
Now we turn to investigating the distributions of

lepo|® (p#0) and (epp — %)2 (150)

in order to determine the averages of M and N as in Section

A4

The latter problem is the easier one. We know already that u < e,, < u + du (with
0 < u < 1) has probability W (u) du (see Appendix [A.2]). Let a be a positive number
with a < s?/S5%; then the probability of

(epp— /S > a (151)

(note that the left hand side is certainly less than or equal to 1, as 0 < Cpp < 1) is

s/S—+/a 1
< / + / )W(u) du
0 s/S++/a
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:(5—1()5( ——] </ /) — W5 (152)

0 s/S++v/a
The derivative of the logarithm of the integrand equals
s—1 S—s—-1 1
— = —1]-[5-2 153
so the integrand increases when u approaches (s — i/ — 2) from either side. This
point lies to the left of s/5, in fact by an amount of [

s s—1 S —2s 1
- — = < — 154
S S5-2 S(5-2 =3’ (154)

and thus still lies in the interval s/S 4 y/a provided a > 1/S5?. Therefore, within the
domain of integration, the integrand assumes its maximum at u = s/S £ /a (we will not
try to find out at which of the two values). We can thus estimate the entire expression

([I52) as being
(S —1)!
SGoDS s

(5+ \/5)5_1 (1-5Fva) o (155)

Now we use the assumption 1 € s <€ S
Stirling’s formula, approximately equal t

W) 09 (156)

while the second is approximately equal to

which implies that the first factor is, by

S—s

g(gi\/a)s(l—gﬂﬁ/&) : (157)

The entire expression ([I53]) is therefore approximately equal to

AT
= e\/%exp(sln(lig\/@ +(S—s)ln<1$%\/a)) : (159)

45Note of the translator: In the German original, Eq. (I54) is misprinted as

£_3—1+ S —2s <l
S S—-1 S8-1)— 8§

46Note of the translator: In the German original, the second exponent in this expression is misprinted
as S — s, and the factor 1/e = exp(—1), which is as irrelevant as the v/27 to the purpose at hand, is
missing here and in the following.
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The exponent is [because In(1 + x) < x — 2%/2 + 23/3 and In(1 + x) < x| less than or
equal to

Sva  S%a  Sday/a S
+s » —5282is 2 :F(S—S)S_S\/a (160)
S?%a . S3ar/a
=+t —F. 161
2s 352 (161)

Since sy/a/S < 1, the second term is small compared to the first, and thus the expression

(155 is

S 2,
e % (162)

S
e\ 2rs

(© some number less than 1).
This concerned the probability of (e,, — s/S)? > a for a fixed p = 1,...,S5; the
probability that this event occurs for some p, i.e., the probability of

S 5\ 2
N = n;gf(epp - §) >a, (163)

is at most S times larger, and thus

<5 -e% (164)
e s
~ eV27s

Now we estimate the average of N in two parts: for values in [0, a], the probability is at
most 1, for values in [a, 1] we have the above bound. Therefore,

2
MN) Sa+ ———e ° 5 . (165)

Here, a can be chosen to be any number such that a > 1/5? and a < s?/5?; we choose

_851115

50 (166)

(This satisfies everything, provided s > In .S, which must be the case anyway by condi-
tion (I]IM)) Our upper bound thus becomes

881IIS+ S? 6_41n5_881n5+ 1 8sIn S (167)
052 eV 2ms CEE ey 2msS? 052

Thus, if the premise 1 < s < S is satisfied to a sufficient extent, the above average is
certainly less than or equal to 9s1n S/S?.

4TFrom ZIJ,V:“l 1/syq < 1/1n5, follows s,, > In3,. Put differently, see (I05), N, InS,/5, < 1, [or,
equivalently,] S, 1nS,/(845,) < 1 so a fortiori S,/52 < 1, 5, > /S, Ins, > %ln S,. Thus, we have
that s, , > 1InS,, ie, s >1nS.
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A.5

It remains to discuss the distribution of |e,,|* (p # o). We denote the p-th and the
o-th column of {&~} by & = {&ip, -+, &spp} and 1 = {&jo, - - -, €510 }; in addition, let

§=1{&ps -+ &ps 0,...,0}. For such vectors ¢ = {Ci,...,¢st x = {x1,- .., xs} we will
also use the notation

S
€0 =D xir K=V = (168)
=1
We have that .
less|” = [ (&, )7, (169)

where the vectors &, n, being columns of a unitary matrix, are subject to the conditions
€] =1, |n] =1, (§,m) = 0 (i.e., both lie on the unit sphere and are orthogonal to each

other).
We decompose £ into a component parallel to £ and one orthogonal to &:
E=(EEE+E. (170)
Then we can just as well write
z 2
lepol® = (&) (171)

When keeping ¢ (and & ) fixed, we thus have two vectors £, 1 orthogonal to &, of which
the first is fixed and the second can vary freely on the surface of a (S — 1)-dimensional
unit ball. We introduce an arbitrary (S — 1)-dimensional Cartesian coordinate system
for this [subspace], let

n= (Yt Ys—1)- (172)
From the unitary invariance of our averaging procedure follows that the procedure
amounts (for fixed { = {&,, ..., &) }) exactly to averaging n over the (S—2)-dimensional

unit spher as described in Appendix [A.2l Moreover, due to the unitary invariance,
the only thing that matters about é is its length \é |, so we can replace it by

¢={l¢l.0,....0} (173)
(in S — 1 dimensions). That is why we first aim at determining the distribution of
z 9 x
& m]" = Ig]* ] (174)
for [random 7 with]
S—1
=yl =1. (175)
=1

48Note of the translator: The German original literally says here: over the (S — 1)-dimensional unit
ball.
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That (I'74) lies in [u, u + du] (0 < u < |§|2) means that

d
:LS‘?JHQS%‘F:—U’ (176)
[€1? SR
which has probability
d
w(<)5 (177)
€127 112
where W is given by (I3€) with s, S replaced by 1,5 — 1. Thus, the coefficient of du
is g_9
— = S—
ey (N T) R (178)
gfeis-

While we had kept £ fixed up to now, we will now average (IT78) (of course, in the sense
of Appendix [A.2] [i.e., using to a uniform distribution of £]) over the (S-dimensional)
unit sphere. The expression for the distribution of |e,,|? for given ¢ depends only on

€2, and (since ¢ is orthogonal to both & — € and € = £ — (£,€)€) we have that

£ = (5,8 = (£,9), (179)
€12 = | (&, O + IEI° = IEI* + 11, (180)
€2 = €[2(1 — 1€2). (181)
Since £ = {&y,, ..., &s),} varies on the unit sphere, the event
w < € < w+ dw (182)
(0<w<1),ie.,
w <SP <t du, (13)
has probability -
(5—1)! w1 —w) S dw (184)

(s—DI(S—s—1)

In order to obtain the total probability density of |e,,|* at u, we thus need to integrate

(S_ ]-)' s—1 —s—1
s—DI(S—s—1" (=)™
S _ -3
" (w(l — w2))5—2 (w(l —w) = U)S dw
53
(S-S -2) (wl—w)—u)" (185)

T (= DI(S—s— D! w1 —w)s !

49Note of the translator: In the German original, the formula corresponding to (I78)) has S —1 instead
of S—2 and S —2 instead of S —3. This mistake propagates through all further formulas in the German
original but does not affect the final result. Here and in the following, we give the correct exponents.
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over those w € [0,1] with v < w(1 — w). As a consequence, only values in [0, %] can
arise for u. We now determine the probability of |e,,[* > a (with 0 < a < 1), and to
this end we need to integrate (I83]) over those u,w with @ < u < w(l — w), i.e., over

those u, w with
—yi-a<w<it/i-a, a<u<w(l-w). (186)

We can carry out the integration over ufd

Vi wiw) o
(S =S —2) / / (w(d ~w) —u) du dw

(s—=DIS—s—1)! w1 —w)s~!

N =

a

B (S —1)! / (w(l—w)—a)s

S (s—=DI(S—s—1)! wS=s=1(1 — w)s—1

dw . (187)

1
27Vi1 @

We decompose the integral into two parts,

1 1
2 1”@

1

2
/ and / ,
1 1 1
2 2TV1

—a

and introduce the new variable z according to

1 1 ‘ 1 1
5+4/3 —T=w, respectively 5 —/7—1r=w. (188)

In both cases we have that x = w(1 — w), and in both cases = runs from a to i.
Combining both integrals, we arrive at

1

(8—1()?(;?;—1)/ Sz[ +\/7 - \/T ~(s=1)

o - d
N 1_ 1’] ¥ (189)
/1
2 i X
Finally, we introduce the new variable
r—a
Yy=7 ) (190)
1 a

®ONote of the translator: In the German original, (I87) contains an inconsistency (the numerators
of the integrands in the left and right hand sides have equal exponents) that partly compensates the
mistake about exponents in (I78]).
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which runs from 0 to 1. The above expression then becomes?]

(1—4a)522(S—1) [' o,
25—2(5—1)!(5—3—1)!/0 v

x [(1 + VI —day/T—y) 6= D(1 = VI —day/T—y) D4

(1= VI dayT— ) (14 VI day/T—y) )] fy_ .

Once we divide this probability by (1 —4a)® _2_%, only the square bracket depends on a.
As we will show, the square bracket increases as a — 0, and thus so does the quotient
[i.c., (T9I) /(1 — 4a)5~2"2]. Since for a = 0, (I91) is 1, as well as (1 —4a)57272 = 1, this
implies that the quotient is always less than or equal to 1, and thus

(191)

@A) < (1 —4a)5" 27 < e t5-273) (192)

Asa — 0, v/1 — 4a/1 — y tends, monotonically increasingly, to v/1 — ¥, so it suffices
to show that

[(L4+6) (1 =)~V 4 (1= )"V 4 4)7 6] (193)

is an increasing function of ¢ if ¢ > 0 [and ¢ < 1]. Indeed, its derivative

s—1 S—s—l)
1—1¢ 1+t

(1—1)"=D(1 + t)‘(s‘l)(

(148D - t)‘(8‘1)<

S—s—1 s-—1
1—1t¢ 1+1¢

) (194)

1+1
is positive if (we set z = 1—+t > 1) [as we see by multiplying ([94) by (1 + ¢)°*! > (]

ZH((s—1)z—(S—s—-1))+ 2" ((S—=s—1)z2—(s—1)) >0, (195)
but this expression is obviously greater than
2 ((s=1)=(S—s5—1))+2" 1 ((S—s—1)—(s—1)) = (z°7*'=2"T")(5—2s) > 0 (196)

[because z > 1 and S > 2s + 2]. Thus, we have verified the above bound for the
probability of |e,,|? > a for a fixed pair p # o, p,o = 1,...,S. The probability that
this occurs for any such p, o, i.e., the probability of

M = max(le,o|?) > a, (197)

p,o=1
p#o

5INote of the translator: In the German original, a factor (1 — 4a)~'/2 is missing here and in the
following equations. This mistake does not affect the final result.
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is larger by at most a factor of S(S —1)/2 (because of e,, = e}, it suffices to consider
p < o), and thus is less than or equal to

S5 -1 (52_ Y gmta(s-2-) (198)

The average of M we estimate again in two parts: for values in [0, a] the probability is

certainly < 1, for values in [a, 1] we have the above bound. Therefore:

—1
M(M) < a+ %e—‘m(s—?—%) : (199)
For a we can choose any number > 0, < 1, we set
3InS
= ——. 200
a=71-3 (200)

(This fulfills all requirements because of S > 1.) Our upper bound thus becomes

3].115 S(S_l) —31HS5727% 31IIS 52 —3InS 3].115 1 3].115
4 S 8 4 S 8 4 S 85 4 S
Thus, if the premise S > 1 is satisfied to a sufficient extent then the above average is

less than or equal to In S/S.
This completes the proof of the desired estimates.

(201)
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