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a b s t r a c t

With the aid of simple analytical computations for the Ehrenfest model, we clarify some
basic features of macroscopic irreversibility. The stochastic character of the model allows
us to give a non-ambiguous interpretation of the general idea that irreversibility is
a typical property: for the vast majority of the realizations of the stochastic process,
a single trajectory of a macroscopic observable behaves irreversibly, remaining ‘‘very
close’’ to the deterministic evolution of its ensemble average, which can be computed
using probability theory. The validity of the above scenario is checked through sim-
ple numerical simulations and a rigorous proof of the typicality is provided in the
thermodynamic limit.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the irreversibility from first principles is an old and noble problem of Physics. The technical reason of
its difficulty is rather clear: on the one hand, the microscopic world is ruled by laws (Hamilton equations) which are
invariant under the transformation of time reversal (t → −t , q → q , p → −p, being q and p the positions and
momenta of the system); the macroscopic world, on the other hand, is described by irreversible equations, e.g. the Fick
equation for the diffusion [1–4].

How is it possible to conciliate the two above facts? On this topic there is an aged debate which started with the
celebrated Boltzmann’s H theorem and the well known criticisms by Loschmidt (about reversibility) and Zermelo (about
recurrency). Of course we cannot enter in a detailed discussion about this fascinating chapter of statistical mechanics [2,5].
Already Boltzmann and Smoluchowski understood that the criticism by Zermelo is not a real serious problem as long
as macroscopic systems are considered: basically, because of the Kac’s lemma, in macroscopic systems the recurrence
time is so large that it cannot be observed [2,6,7]. We can summarize the conclusions of Boltzmann by saying that
the irreversibility describes an empirical regularity of macroscopic objects which is valid for a ‘‘vast majority’’ of the
possible initial conditions. Often such validity for the ‘‘vast majority’’ of initial conditions is called typicality. According
to Lebowitz [8] (as well as many others) a certain behavior is typical if the set of microscopic states for which it occurs
comprises a region whose volume fraction goes to one as the number of molecules N grows. We can state that irreversibility
is an emergent property [5,6,9] which appears as the number of degrees of freedom becomes (sufficiently) large; in such
a limit, a single observation of the system is enough to determine its macroscopic properties.
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Several mathematical results, as well as detailed numerical simulations, support the coherence of the scenario proposed
by Boltzmann [2]. Among the others, Lanford’s work about the rarified gases is particularly important: he was able to
prove, in a rigorous fashion, the validity of the Boltzmann equation for short times (of the order of the collision time) in
the so-called Boltzmann–Grad limit [10].

In spite of the above mentioned results, irreversibility still remains a somehow misinterpreted and controversial issue.
The reader may appreciate the diversity of opinions from the comments [11] to a well known paper by Lebowitz on
Boltzmann’s approach to the irreversibility. For instance, Prigogine and his school claim that irreversibility is either true
on all levels or on none: it cannot emerge as if out of nothing, on going from one level to another [6,11,12]. For others,
irreversibility either results from (microscopic) chaotic dynamics or it is a mere consequence of the interaction with the
external environment.

One source of the controversy about the Boltzmann point of view, in particular among philosophers of science, is how
to interpret typicality [13].

This article aims at supplementing, mainly for pedagogical purposes, the basic aspects of Boltzmann’s explanation
of macroscopic irreversibility. In order to present a clear non ambiguous analysis we treat a stochastic system, i.e the
celebrated Ehrenfest model, which is nothing but a Markov chain. A simple and neat analytical computation for the model
shows, in a precise way, that for N ≫ 1 each realization is very close, at any time, to the average value (which can be
easily computed).

The paper is organized as follows: in Section 2 we introduce the problem of typicality together with some remarks
about ensembles and entropies. Section 3 is devoted to the Ehrenfest model, and to some numerical results. Then, we
rigorously prove the typicality of a trajectory for such a model in Section 4. Finally we summarize the results in Section 5.

2. Remarks about ensembles, entropies and typicality

Traditionally, entropy has an important relevance in the treatment of irreversibility; it seems to us that this central
role is mainly based on historical grounds. In the present paper we do not discuss irreversibility in terms of entropy, for
two main reasons. First, the word entropy can be source of confusion: for instance the entropy SG, defined in terms of the
probability distribution function in the Γ - space, has a completely different behavior from SB, i.e the entropy obtained
from the probability density of a single particle (µ-space); for a discussion on this point see [4,8,14]. Second, at a practical,
as well as at a conceptual level, for understanding of irreversibility it is enough to observe that, if the system starts from a
typical far-from-equilibrium initial state, the macroscopic observables stay close to their mean values during the evolution,
and therefore they approach their equilibrium values. In Section 4 we will discuss this point in a precise mathematical
way.

Even if probability theory has a great relevance for statistical mechanics, it is necessary to avoid mixing mathematics
and physics. It is true that the building of the standard formulation of statistical mechanics is based on statistical
ensembles, but this approach can be seen as a mere stratagem, and it is ultimately unconvincing in the following sense:
in experiments, as well as in numerical computations, we are forced to treat a unique system, and we have not access
to a collection of identical systems [15,16]. At a physical level the relevant problem is: what is the link between the
probabilistic computations (i.e. the averages over an ensemble) and the actual results obtained by looking at a single
realization (or sample) of the system under investigation?

In particular one should be careful to avoid the confusion between irreversibility and relaxation of the phase space
probability distribution [8,14]. In presence of ‘‘good chaotic properties’’ (mixing systems) one has that the probability
density, ρ(X, t), relaxes (in a suitable technical sense) to the invariant distribution for large times, i.e. ρ(X, t) → ρinv(X) as
t → ∞. This property is remarkable, and rather important in the dynamical systems context; still, it cannot be considered
physical irreversibility. Actually, from a physical point of view, the true question is to show that a single macroscopic
system shows an irreversible behavior, for a ‘‘generic’’ initial state. In crude terms the interesting point is to understand
the cooling of a single (initially hot) pot and not the behavior of an ensemble of pots.

In deterministic systems a delicate point is how to intend typicality i.e. the precise mathematical meaning of ‘‘vast
majority’’. As already mentioned, for many scientists active in statistical mechanics ‘‘vast majority’’ means with probability
close to 1 with respect to the Lebesgue measure, in physical terms microcanonical distribution [8,16,17]. Such an
interpretation has been considered not convincing by some authors who criticized the privileged status of the Lebesgue
measure [13]. Although, in our opinion, there are very good reasons to privilege the microcanonical distribution, we do
not insist in such controversial aspect. In the following we will consider a well known stochastic model [18,19] where
there is no ambiguity about the meaning of ‘‘vast majority’’. An analysis of simplified stochastic models of this kind can
help very much, in particular at pedagogical level, for understanding irreversibility (see for instance [20] for a discussion
about Kac ring model).

3. The Ehrenfest model: heuristic results

3.1. Description and basic properties

For the sake of self-consistency, we briefly recall the Ehrenfest model [18]. We consider N particles, labeled with an
index i = 1, . . . ,N , and two boxes, A and B: at the beginning, each particle can be placed either in box A or in box B.
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Fig. 1. Physical interpretation of the Ehrenfest model: box A (containing nt particles) is connected to the box B (containing N − nt particles) by a
narrow channel.

At every time step we randomly choose an integer number between 1 and N , with a uniform distribution, and we move
the corresponding particle from its box to the other one. The ‘‘macroscopic’’ state of the model at time t is identified by
nt , the number of particles in A, while the corresponding ‘‘microscopic’’ configuration is defined by the (labeled) particles
which actually are in box A at that time. The Markovian evolution for the macroscopic state is ruled by the transition
probabilities for nt = n to become nt+1 = n ± 1:{

Pn→n−1 =
n
N

Pn→n+1 = 1 −
n
N .

(1)

As a consequence, for any starting value n0, during t steps the macroscopic state can realize 2t different trajectories.
Let us notice that in the Ehrenfest model the detailed balance holds: this property in the stochastic context is somehow
equivalent to the time reversibility.

This model can be seen as a crude description of a system with N particles in two vessels (A and B), connected by a
narrow pipe, as shown in Fig. 1. Of course in this case the true dynamics is deterministic, while in the Ehrenfest model
the evolution is stochastic. As a link between the original, Hamiltonian system and its Markovian counterpart, we can
imagine to associate to each realization of the Ehrenfest model a set of initial conditions in the deterministic system.

The simplicity of the model allows us to study the statistical features of the evolution of an ensemble of (microscopic)
initial conditions in the same (macroscopic) state, n0, by computing the evolution of the first and the second conditional
momenta of the state nt , namely ⟨nt⟩ and σ 2

t = ⟨n2
t ⟩− ⟨nt⟩

2; for the sake of simplicity, we omit the conditional argument
in the average ⟨·|n0⟩. It is easy, see Appendix A, to show that:

⟨nt⟩ =
N
2

+

(
1 −

2
N

)t

∆0 , (2)

σ 2
t =

N
4

+

(
1 −

4
N

)t (
∆2

0 −
N
4

)
+

(
1 −

2
N

)2t

∆2
0 , (3)

where ∆0 = n0 − N/2. From Eq. (2) is clear that ⟨nt⟩ relaxes monotonically to the equilibrium (mean) value neq = N/2,
with an exponential decay ruled by the characteristic time τc = −1/ln(1 − 2/N) ≃ N/2. In a similar way the conditional
standard deviation σt tends to its equilibrium value

√
N/2 with a characteristic time O(N).

3.2. First numerical clues of typicality

Let us note that Eqs.(2) and (3) provide a description of the process only at an average level, giving no information
about the single realization. We will see that under the assumption N ≫ 1 (somehow equivalent to the thermodynamic
limit in real physical systems) almost all actual realizations are arbitrarily close to the average evolution at any time,
i.e. almost all trajectories are ‘‘typical’’.

Simple numerical computations suggest that a single trajectory is typical in the sense discussed above, i.e. that
behaviors very different from the average one are extremely rare. In Fig. 2 we show nt/N in function of time, panels
(a) and (b), for several single realizations of nt for the same n0, where the exponential behavior clearly emerges for
each trajectory. Panels (c) and (d), on the other hand, display nt − ⟨nt⟩ vs t for the same trajectories; we superimpose a
confidence interval (light blue region) obtained by considering a stripe ±3σt around the conditional average value, ⟨nt⟩,
as computed in Eqs. (2) and (3). Each trajectory is contained in this stripe for almost all times: since the trajectories are
closer to their mean value as N increases, Fig. 2 can be seen as a first, rough numerical clue of the emergence of typicality
in the limit N ≫ 1.
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Fig. 2. Single trajectories of the model. Above: nt/N as a function of the time t , for N = 103 (panel (a)) and N = 106 (panel (b)); three different
realizations are shown for each case. The inset in panel (b) is a magnified detail of the plot. Below: (nt − ⟨nt ⟩)/N vs t for the same trajectories
(N = 103 in panel (c) and N = 106 in panel (d)). Light-blue regions are stripes of size ±3σt around the mean value ⟨nt ⟩. In all considered cases,
n0 = 0.9N .

3.3. Maximal deviations from the average

In the next Section, using just simple mathematical methods of the probability theory, we will show that starting from
a far-from-equilibrium initial condition (e.g. |n0 − N/2| ≫

√
N), nt exhibits an irreversible behavior in the limit N ≫ 1,

namely it remains close to ⟨nt⟩, which exponentially decays to its equilibrium value N/2. More precisely, defining the
quantity

δT = sup
0≤t≤T

|nt − ⟨nt⟩| , (4)

i.e. the maximal deviation of nt from its average value along a trajectory of T time-steps, we will show that

Prob
(

δT

N
< cN

)
≥ 1 − ζN , (5)

where T is O(N), and both the constants cN and ζN tend to zero in the limit N → ∞.
Before we exhibit a mathematical proof of relation (5), let us provide a numerical evidence of its validity. In Fig. 3 we

show δmax(M), defined as the maximal value of δT along M different trajectories of length T , in function of M . The scaling of
such a quantity with M is particularly interesting, since the number of realizations we need to observe a certain maximal
deviation δmax from the average is an indication of its probability.

Using Kac’s lemma for recurrence times [19,21], in Appendix B we derive the following scaling:

δmax
√
N

∼
√
lnM , (6)

under the assumption that δT , for large values, is distributed as a Gaussian variable. Let us remark that detailed statistical
features of extremal events can be established in the framework of Gumbel’s theory [22]: however, since we are only
interested in the scaling law of δmax vs M , we can avoid the use of the complete theory by a direct application of Kac’s
lemma. Let us remark that with a different distribution for δT , still exponentially decaying to zero, only minor changes
occur in the result. We observe that Eq. (6) is in fair agreement with the numerical data presented in Fig. 3.
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Fig. 3. Scaling law between the maximal deviation δmax from average as function of the number of trials M , for N = 103, 104, 105, 106 and T = 2N .
As in Fig. 2, we set n0 = 0.9N in all cases.

Roughly speaking, Eq. (6) means that the maximal observed value of δT/
√
N grows very slowly with the number of

trials M , implying that significative deviations from the average are extremely rare.

4. A simple analytical result

In order to understand how much a single realization of nt deviates from its average ⟨nt⟩, i.e. how much a single
trajectory is ‘‘typical’’ in the sense discussed in the previous sections, we focus on the probability:

PN,T = Prob
(
|nt − ⟨nt⟩| < εN ∀t : 0 < t ≤ T

)
(7)

where εN is a constant (it only depends on N) and by ⟨nt⟩ we mean ⟨nt |n0⟩. Our goal is to prove that

PN,T → 1 as N → ∞ , εN/N → 0, T/N → const. (8)

In other words, we aim at showing that a single realization is almost surely contained in a stripe ±εN , at least up to times
∼ O(N), being εN a quantity that grows slower than N when N tends to infinity.

First of all let us define the following sets:

Ωτ ≡ {t = kτ : k = 1, 2, . . . , ⌊T/τ⌋}

Ωτ ≡ {t ∈ Z+
: t ≤ T , t /∈ Ωτ } ,

(9)

where τ ∈ Z and ⌊x⌋ is the integer part of the real number x; Ωτ is the set of the equidistant discrete times t ≤ T separated
by τ , while the remaining times of the trajectory form the set Ωτ . Defining At as the event that δnt ≡ |nt − ⟨nt⟩| < αN ,
where αN < εN is a constant, we can write the following lower bound for PN,T :

PN,T ≥ Prob
[(

δnt < εN , ∀t ∈ Ωτ

)
and (At , ∀t ∈ Ωτ )

]
(10)

that can be decomposed, using the definition of the conditional probability P , as

PN,T ≥ P
(
δnt < εN , ∀t ∈ Ωτ | At , ∀t ∈ Ωτ

)
· Prob (At , ∀t ∈ Ωτ ) . (11)

Because of the Markovian character of the process, the above inequality can be written as:

PN,T ≥ P
(
δnt < εN , ∀t ∈ Ωτ | At , ∀t ∈ Ωτ

) ∏
t∈Ωτ

P (At |At−τ ) . (12)

We will see that, with a suitable choice of τ , such decomposition allows us to prove our statement (8). Now we need to
study the two factors of the right hand side of Eq. (12): the first one can be estimated using the transition rules of the
Markov chain (1), whereas for the second one we will apply the Chebyshev’s inequality.

Since at every time step the value of nt can only increase (or decrease) by 1, and the same holds for ⟨nt⟩, we can write
the following inequality:

δnt ≤ δnkτ + 2τ , ∀t : kτ < t < (k + 1)τ , (13)
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i.e. during τ time steps, the distance between a particular trajectory and the average cannot spread more than 2τ . We
could consider even stronger bounds on δnt , but inequality (13) is enough to prove our result. In particular, if αN+2τ < εN
relation (13) implies

P
(
δnt < εN , ∀t ∈ Ωτ | At , ∀t ∈ Ωτ

)
= 1 . (14)

Let us notice that if we consider:

αN = Na , εN = Nb , τ = ⌊εN/3⌋ (15)

if N is large enough, Eq. (14) holds as soon as

0 < a < b < 1 . (16)

In order to evaluate the product in the left hand side of Eq. (12) we use a different strategy: denoting with Ac
t the

complementary event of At , for every t Chebyshev’s inequality [23] ensures that

P
(
Ac

t |A0
)

≤
σ 2
t

α2
N

≤
N1−2a

4
, (17)

where we have used the bound σ 2
t ≤ N/4 (Eq. (A.9) of Appendix A). Noting that

P (At |A0) = P (At |At−τ ) P (At−τ |A0) + P
(
At |Ac

t−τ

)
P
(
Ac

t−τ |A0
)

≤ P (At |At−τ ) + P
(
Ac

t−τ |A0
)

,
(18)

from (17) we easily get

P (At |At−τ ) ≥ P (At |A0) − P
(
Ac

t−τ |A0
)

= 1 −
[
P
(
Ac

t−τ |A0
)
+ P

(
Ac

t |A0
)]

≥ 1 −
N1−2a

2
.

(19)

Finally, using relation (19) to estimate the product in Eq. (12), we find:

PN,T ≥

∏
t∈Ωτ

P (At |At−τ ) ≥

(
1 −

N1−2a

2

)⌊T/τ⌋

, (20)

where ⌊T/τ⌋ is the cardinality of Ωτ . If we choose T to be proportional to N , we can always find a constant β , independent
of N , such that

⌊T/τ⌋ ≤ 2βN1−b . (21)

It is easy to show that, if the constraint (16) holds and, in addition, we choose a such that:

a > 1 −
b
2

, (22)

the right hand side of Eq. (20) approaches to one as exp
(
−βN2−2a−b

)
when N → ∞ (note indeed that from

inequalities (16) and (22) one has 1 − 2a < 0). This completes the proof, since Eq. (15) ensures that εN/N → 0 in
such limit.
As an example, we have that the couple b = 0.8 and a = 0.7 satisfies the relations (16) and (22), giving PN,T ≥

exp
(
−βN−0.2

)
.

5. Conclusions

The time irreversibility is an experimental fact whose validity must be accepted as a (quite obvious) empirical property
of macroscopic systems. On the other hand it is not easy at all to build a coherent theory that conciliates such macroscopic
behavior with the reversible nature of the laws at the microscopic level (i.e. Newton’s equations). The difficult point is
to give a mathematical dignity to the great visionary conjecture of Boltzmann, stating that in macroscopic systems an
irreversible behavior occurs for the overwhelming majority of the initial conditions.

One of the most important steps in the ambitious program of formalizing the idea that irreversibility is a typical
property is due to Lanford: he had been able to show the validity of the conjecture of Boltzmann for rarified gases in a
suitable limit. Lanford proved his result only for a short time (of the order of one collision time); in addition, some authors
claim that the use of the Lebesgue measure in the formulation of the idea of typicality is questionable.

In the present paper we give an additional contribution, mainly at a pedagogical level, to support the Boltzmann’s
conjecture. For the Ehrenfest model we show a result which shares the same philosophy of the Lanford’s work: in the
limit N ≫ 1, a single trajectory of nt is very close to its mean value ⟨nt⟩, with probability close to 1.

Due to the stochastic nature of our system, it is possible to obtain analytical results up to large times, and there is no
ambiguity about the possible interpretations of typicality.
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Appendix A. Derivation of Eqs. (2) and (3)

Let us start with the derivation of Eq. (2). Defining the variable ∆t as a random quantity which takes values ±1 with
probabilities 1 − nt/N and nt/N , respectively, we have the recurrence relation:

nt+1 = nt + ∆t . (A.1)

Taking the conditional average of the state nt+1 for a given nt , using Eq. (A.1), we get:

⟨nt+1|nt⟩ = nt + ⟨∆t |nt⟩ = nt +

(
1 −

nt

N

)
−

nt

N
=

(
1 −

2
N

)
nt + 1 (A.2)

where we have just applied the definition of ∆t . Defining the variable δt = ⟨nt |nt−1⟩−N/2, we can replace Eq. (A.2) with
a recursive relation for δt :

δt+1 =

(
1 −

2
N

)
δt . (A.3)

Fixing the initial state n0, corresponding to some δ0, we finally get:

δt =

(
1 −

2
N

)t

δ0 , (A.4)

which, in terms of ⟨nt |n0⟩ and the initial state n0, reads:

⟨nt |n0⟩ =
N
2

+

(
1 −

2
N

)t (
n0 −

N
2

)
. (A.5)

Analogue calculations allows us to compute Eq. (3), using the same strategy of Eq. (A.2), we can obtain a relation for
⟨n2

t+1|nt⟩:

⟨n2
t+1|nt⟩ = 1 +

N − 4
N

n2
t + 2nt . (A.6)

Applying recursively this equation and using that ⟨n2
0|n0⟩ = n2

0, we get:

⟨n2
t |n0⟩ =

N(N + 1)
4

+ N
(
n0 −

N
2

)(
1 −

2
N

)t

+

(
n2
0 +

N
4

(N − 4n0 − 1)
)(

1 −
4
N

)t

.

(A.7)

Using Eq. (A.5) it is straightforward to derive the variance, conditioned to the initial value n0:

σ 2
t = ⟨n2

t |n0⟩ − ⟨nt |n0⟩
2

=

=
N
4

+

(
1 −

4
N

)t
[(

n0 −
N
2

)2

−
N
4

]
+

(
1 −

2
N

)2t (
n0 −

N
2

)2

,
(A.8)

which leads to Eq. (3). As a remark, we note that Eq. (A.8) is bounded by:

σ 2
t ≤ σ 2

∞
=

N
4

, (A.9)

the stationary variance of the Ehrenfest model.

Appendix B. Scaling law for δmax(M)

Let us consider the Markov chain (1) starting with the initial condition n = n0. For each trajectory, Eq. (4) defines the
largest deviation δT from the average (within a time T ), and we have indicated as δmax(M) the maximal occurrence of this
quantity in M independent realizations. Our goal is to find an (approximate) relation between δmax and M . We assume an
asymptotic behavior of the probability density function, p(x), of the random variable x = δT/σ∞ for a single trajectory.
For instance, we can assume that such distribution decays with a Gaussian tail,

p(x) ≃ αe−cx2 for x ≫ 1 . (B.1)
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The (average) number of independent attempts M that are needed in order to observe a value of x larger than X is simply
given by Kac’s lemma [19]:

⟨M⟩ =

(∫
∞

X
dx p(x)

)−1

. (B.2)

With the assumption (B.1), in the limit X ≫ 1, the above relation can be written as

ln⟨M⟩ ≃ − ln

(
const.

e−cX2

2X

)
≃ cX2 . (B.3)

Inserting X = δmax/σ∞ ∼ δmax/
√
N into the above relation, we finally get the scaling law in Eq. (6). It is easy to understand

that the above argument for the logarithmic dependence of X as a function of ⟨M⟩ is rather robust and does not depend
on the details of the distribution: assuming an asymptotic shape p(x) ∼ exp

(
−cxA

)
, one obtains

ln⟨M⟩ ∼ xA . (B.4)
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