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Preface

Since the first publication of this book in 1993, there have been enormous research
activities in quantum dissipative mechanics both experimentally and theoretically.
For this reason, it has been highly desirable after the book has been sold out almost
three years ago to undergo a number of extensions and improvements. I have been
encouraged by the positive reception of this book by a large community and by many
colleagues to write not simply an updated second edition. What came out now after
all is almost a new book of roughly double content.

In an extensive rewriting, the 19 Chapters of the First Edition have been ex-
panded by about one third to better meet the desires of both the newcomers to the
field and the advanced readership, and I have added 7 new chapters. The most rele-
vant extensions are as follows. In the first part, I have added a section on stochastic
dynamics in Hilbert space and I have extended the discussion of relevant microscopic
global models considerably. Now, there are also treated acoustic phonons with two-
phonon coupling, a microscopic model for tunneling between surfaces, charging and
environmental effects in normally conducting and superconducting tunnel junctions,
and nonlinear quantum environments. Part II now contains an extended discussion
of the damped harmonic oscillator (e.g., a study of the density of states is added),
and new chapters on the thermodynamic variational approach and variational per-
turbation expansion method, and on the quantum decoherence problem. Part III,
which deals with quantum-statistical decay, is extended by two chapters. In the new
edition, the turnover theory to the energy-diffusion limited regime is discussed, and
the treatment of dissipative quantum tunneling has been extended and improved.
Ample space is now provided in Part IV to a thorough discussion of the dissipative
two-state system. A number of new results on the thermodynamics and dynamics of
this archetypal system are presented. An extensive discussion of electron transfer in
a solvent, incoherent tunneling in the nonadiabatic regime, and single-charge tunnel-
ing is provided in a unified framework. Regarding dynamics, new sections on exact
master equations, improved approximation schemes, and recent results on correlation
functions have been written, and a new chapter on the driven dissipative two-state is
included. Part V, which deals with the dissipative multi-state system, is completely
rewritten. It now contains four chapters on quantum Brownian motion in a cosine
potential, multi-state dynamics, duality symmetry, and tunneling of charge through
an impurity in a quantum wire. Many new results available only very recently are pre-
sented. The about 460 references are suggestions for additional reading on particular
subjects and are not intended as a comprehensive bibliography.

Stuttgart
December 1998 Ulrich Weiss
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Preface to the First Edition

This book is an outgrowth of a series of lectures which I taught at the ICTP at Trieste
and at the University of Stuttgart during the spring and summer of 1991. The purpose
of my lectures was to present the approaches and techniques that accurately treat
quantum processes in the presence of frictional influences.

The problem of open quantum systems has been around since the beginnings of
quantum mechanics. Important contributions to this general area have been made by
researchers working in fields as diverse as solid-state physics, chemical physics, bio-
physics, quantum measurement theory, quantum optics, nuclear and particle physics.
Often, there has been used, and still is used, a language well known in one context or
one field, yet sufficiently different from others that it is not altogether easy to make
out the connection. Here, I offer a collection of ideas and examples rather than a
comprehensive review of the topic and the history.

The central theme is the space-time functional integral or path integral formu-
lation of quantum theory. This approach is particularly well suited for treating the
quantum generalization of friction. Here we are faced to understand the behavior of
a system with few quantal degrees of freedom coupled to a thermal reservoir. After
integrating out the bath while keeping the system’s coordinates fixed we get the in-
fluence functional describing the influence of the many bath degrees of freedom on
the few relevant ones. This leads to an effective action weighting the paths of the
open system in the functional integral description. Indeed, if one wishes to perform
numerical computations on a rigorous level, there are no alternatives to this approach
at present.

Path integration in condensed matter and chemical physics has become a growth
industry in the last one or two decades. A newcomer to this thriving field may not
yet be very familiar with the path integral method. Here, I do assume a knowledge
of standard text book quantum mechanics and statistical mechanics augmented by a
knowledge of Feynman's approach on a first introductory level. The books by Baym
[1], Chandler [2], Feynman and Hibbs [3], and by Feynman [4] provide the elementary
material in this regard. Further background and supplementary material on the path
integral method are contained in the books by Schulman [5] and by Kleinert [6).
However, advanced mastery of these subjects is not necessary.

Some of the more sophisticated concepts, such as preparation functions, prop-
agating functions, and correlation functions, are basic to the development as it is
presented here. To cover this material at an introductory level, I make frequent use
of simplified models. In this way, I can keep the mathematics relatively simple.

Many of the problems, methods, and ideas which are discussed here have become
essential to the current understanding of quantum statistical mechanics. I have made
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a considerable effort to make the material largely self-contained. Thus, although the
theoretical tools are not developed systematically and in its full beauty, the material
may be useful to many graduate students to become familiar with the field and learn
the methods. For the most part, I refrain from just quoting results without explaining
where they come from. With regard to citations, I have tried to give references to the
historical development and also to provide a selection of the very recent important
ones. But the list is surely not a comprehensive bibliography.

This book exists because of the physics I learned and enjoyed from the fertile
collaboration with Hermann Grabert, Peter Hinggi, Gert-Ludwig Ingold, Peter Rise-
borough, and Maura Sassetti. I am particularly indebted to Maura who took time
off her research to weed out points of confusion and who persistently encouraged me
to finish this venture. I am also grateful to my students Reinhold Egger, Manfried
Milch, Jiirgen Stockburger, and Dietmar Weinmann for helpful comments concerning
the presentation of many subjects discussed here and for preparing the figures.

In writing this book, I have benefited from the discussion with many compan-
ions; in particular Uli Eckern, Enrico Galleani d’Agliano, Anthony J. Leggett, Hajo
Leschke, Franco Napoli, Albert Schmid, Gerd Schon, Larry Schulman, Peter Talkner,
Valerio Tognetti, Andrei Zaikin, and Wilhelm Zwerger, who helped me in increasing
my understanding of many of the subjects which are discussed here.

It is a pleasure to thank my teacher, colleague, and friend Wolfgang Weidlich for
many fruitful discussions over the years.

Finally, and most importantly, I am deeply grateful to my wife Christel and my
children Ulrike, Jan, and Meike for their infinite patience and omnipresent sympathy.

Stuttgart
October 1992 Ulrich Weiss
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1. Introduction

Quantum-statistical mechanics is a very rich and checkered field. It is the theory
dealing with the dynamical behavior of spontaneous quantal fluctuations.

When probing dynamical processes in complex many-body systems, one usually
employs an external force which drives the system slightly or far away from equilib-
rium, and then measures the time-dependent response to this force. The standard
experimental methods are quasielastic and inelastic scattering of light, electrons, or
neutrons off a sample, and the system’s dynamics is analyzed from the line shapes of
the corresponding spectra. Other experimental tools are, e. g., spin relaxation exper-
iments, studies of the absorptive and dispersive acoustic behavior, and investigations
of transport properties. In such experiments, the system'’s response gives information
about the dynamical behavior of the spontaneous fluctuations. Theoretically, the re-
sponse is rigorously described in terms of time correlation functions. Therefore, time
correlation functions are the center of interest in theoretical studies of the relaxation
of non-equilibrium systems.

This book deals with the theories of open quantum systems with emphasis on phe-
nomena in condensed matter. An essential ingredient of any particular real dissipative
quantum system is the separation of a global quantum system into a subsystem, usu-
ally called the relevant part, and the environment, called the irrelevant part. In most
cases of practical interest, the environment is thought to be in thermal equilibrium.
The coupling to a quantum statistical environment results in a fluctuating force act-
ing on the relevant system and reflecting the characteristics of the heat reservoir. It
is the very nature of the fluctuating forces to cause decoherence and damping, and
to drive everything to disorder.

While quantum mechanics was conceived as a theory for the microcosm, there
is apparently no contradiction with this theory in the mesoscopic and macroscopic
world. The understanding of the appearance of classical behavior within quantum
mechanics is of fundamental importance. This issue i1s intimately connected with the
understanding of decoherence. Despite the stunning success of quantum theory, there
is still no general agreement on the interpretation. The main disputes circle around
“measurement” and “observation”.

Decoherence is the phenomenon that the superposition of macroscopically distinct
states decays on a short time scale. It is omnipresent because information about
quantum interference is carried away in some physical form into the surroundings. In
a sense, the environmental coupling acts as a continuous measuring apparatus, leading
to an incessant destruction of phase correlations. The relevance of this coupling for
macroscopic systems is nowadays generally accepted by the respectable community.

An attempt is made to present the problem of dissipation in quantum mechanics in
a unified form. A general framework is developed which can deal with weak and strong
dissipation, and with all kinds of memory effects. The reader will find a presentation
of the relevant ideas and theoretical concepts, and a discussion of a wide collection
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of microscopic models. In the models and applications, emphasis is put on condensed
matter physics. We have tried to use vocabulary and notation which should be fairly
familiar to scientists working in chemical and condensed matter physics.

The book is divided into five parts. The following sequence of topics is adopted.
The first part of the book is devoted to the general theory of open quantum systems.
In Chapter 2, we review traditional approaches, such as formulations by master equa-
tions for weak coupling, operator-valued and quasiclassical Langevin equations. We
also discuss attempts to interpret the dynamics of an open quantum system in terms
of a stochastic process in the Hilbert space of state vectors pertaining to the reduced
system. In Chapter 3, various global models are introduced. They are partly connected
with microscopic models which are of relevance in condensed matter physics. Chapter
4 is devoted to the equilibrium statistical mechanics for the relevant subsystems of
these models using the imaginary-time path integral approach. Chapter 5 concerns
dynamics — quantum-mechanical motion, decoherence and relaxation of macroscopic
systems that are far from or close to equilibrium. In particular, we discuss the con-
cepts of preparation functions, propagating functions, and correlation functions and
derive the corresponding exact formal solutions using the path integration method.

Part IT with Chapters 6 — 9 covers a discussion of exactly solvable damped linear
quantum systems (damped harmonic oscillator and free Brownian particle), the use-
ful thermodynamic variational approach with extension to open nonlinear quantum
systems, and a semiclassical treatment of the quantum decoherence problem for a
particle traveling in a medium.

Part III deals with quantum-statistical metastability: a problem of fundamental
importance in chemical physics and reaction theory. After an introduction into the
problem in Chapter 10, the relevant theoretical concepts and the characteristic fea-
tures of the decay are discussed in Chapters 11 to 17 . The treatment mainly relies
on a thermodynamic method in which the decay rate is related to the imaginary part
of the analytically continued free energy of the damped system. This allows for a uni-
form theoretical description in the entire temperature range. The discussion extends
from high temperatures where thermal activation prevails down to zero temperature
where the system can only decay by quantum-mechanical tunneling out of the ground
state in the metastable well. Results in analytic form are presented where available.

In Part IV, we consider the thermodynamics and dynamics of the dissipative two-
state or spin-boson system, which is the simplest nonlinear system that allows to
study the interplay between quantum coherence, quantal and thermal fluctuations,
and friction. After an introduction into the model in Chapter 18, the discussion in
Chapter 19 is focused on equilibrium properties for a general form of the system-
reservoir coupling. In particular, the partition function is discussed and the specific
heat and static susceptibility are studied. The relationship with Kondo and Ising
models is explained. Chapter 20 is devoted to the electron transfer problem in a sol-
vent, nonadiabatic tunneling under exchange of energy, and single charge tunneling
in the presence of an electromagnetic environment. Chapter 21 deals with the dissi-



pative two-state dynamics. Different kinds of initial preparations of the system-plus-
reservoir complex are treated and exact formal expressions for the system’s dynamics
in the form of series expressions and generalized master equations are derived. Am-
ple space is devoted to the discussion of non-equilibrium and equilibrium correlation
functions, and to adequate approximate treatments in the various regions of the pa-
rameter space. Part IV is concluded with a chapter on the dynamics of the dissipative
two-state system under exposure to time-dependent external fields.

The last part reviews quantum transport in a dissipative multi-state system. In
Chapters 23 and 24, we introduce the relevant global models, develop the general
formalism and derive exact formal expressions describing the system’s dynamics for
factorizing and thermal initial states. Chapter 25 provides a discussion of a duality
symmetry between the weak- and strong-binding representations which becomes an
exact self-duality in the so-called Ohmic scaling limit. We show that self-duality offers
the possibility to construct the exact scaling function for the nonlinear mobility at
zero temperature. The book closes with a chapter on charge transport across a weak
or strong impurity in a quantum wire. It is shown that this model maps on the multi-
well system coupled to an Ohmic heat bath. Thus, the results of the latter model can
be directly transferred to the impurity scattering problem.

We have tried to concentrate on models which are simple enough to be largely
tractable by means of analytical methods. There are, however, important examples
where numerical computations have given clues to the analytical solution of a prob-
lem. If one wishes to calculate the full dynamics of the global system, one is faced
with the problem that the number of basis states is growing exponentially. There-
fore, even on supercomputers, the number of reservoir modes which can be treated
numerically exactly, is rather limited. When the number of bath modes is above ten
or even tends to infinity, an inclusive description of the environmental effects, e.g., in
terms of the influence functional method (cf. Chapters 4 and 5) is indispensable. Var-
1ous numerical schemes developed within the framework of the influence functional
approach are available. The most valuable numerical tool in many-body quantum the-
ory is probably the path integral Monte Carlo simulation method. Unfortunately, in
simulations of the real-time quantum dynamics, the numerical stability of long-time
propagation is spoilt by the destructive interference of different paths contributing to
the path sum. This so-called dynamical sign problem is intrinsic in real-time quantum
mechanics, and is characterized by an exponential drop of the signal-to-noise ratio
with increasing propagation time.

In recent years, considerable progress in reducing the sign problem has been
achieved by implementation of blocking algorithms in quantum Monte Carlo simula-
tions based on a Trotter split-up of the elementary propagator. A possible strategy
consists in sampling “blocks” of which the corresponding average sign is nonzero,
instead of single states. This method always reduces the sign problem [C. H. Mak
and R. Egger, Adv. Chem. Phys. 93, 39 (1996) |. Alternatively, one may use iterative
procedures which are based on systematic approximations. In the so-called tensor-
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propagator approach, a maximal correlation time of the influence functional inter-
actions is introduced [N. Makri, J. Math. Phys. 36, 2430 (1995) ]. In the so-termed
path class approach, the exact summation of a class of paths is approximated by a
low-order cumulant expansion of averages of the path class history [ M. Winterstet-
ter and W. Domcke, Chem. Phys. Letters 236, 455 (1995)]. We have refrained from
adding sections which deal with numerical methods in detail. Where appropriate, we
give relevant information and literature.

After all, the reader may not find a comprehensive account of what interests him
most. Since the number of articles in this general field has become enormous in recent
years, a somewhat arbitrary choice among the various efforts is inevitable. My choice
of topics is just one possibility. It reflects, to some extent, the author’s personal
valuation of an active and rapidly developing area in science.



PART 1
GENERAL THEORY OF OPEN QUANTUM SYSTEMS

2. Diverse limited approaches: a brief survey

Often in condensed phases, a rather complex physical situation can adequately be
described by a global model system consisting of only one or few relevant dynam-
ical variables in contact with a huge environment, of which the number of degrees
of freedom is very large or even infinity. If we are interested in the physical prop-
erties of the small relevant system alone, we have to handle this system as an open
system. In recent years, a variety of theoretical methods for open quantum systems
has been developed and employed. The emphasis in this book is on the functional
integral approach to open quantum systems. This method has turned out to be very
powerful and has found broad application. Nevertheless, I find it appropriate to begin
with a brief survey of various other formalisms. Clearly, the short discussion given
subsequently can not do justice to all of them. However, I hope that the interested
reader will be able to get a line along the given references for deeper studies. I find
it appropriate to begin with a brief discussion of the classical regime.

2.1 Classical Langevin equation

The dynamics of a classical open system is conveniently described by a Langevin
equation in which the effects of the environment are encapsulated in a frictional force
and in a fluctuating force. Consider for simplicity an open system with a single degree
of freedom ¢(t). For linear, i.e., state-independent dissipation, the frictional force is
a linear functional of the history of the velocity §(t). The stochastic force £(t) obeys
Gaussian statistics and is therefore fully characterized by the ensemble averages

€@) =0, €E(t)a = Xat 1) (2.1)

For a white noise source, which originates from a heat reservoir at temperature T
with zero memory time, the stochastic force is 4-correlated according to

X (t—1t) = 2M~kgTo(t —t'), (2.2)
and the friction force is local in time. Thus the classical Langevin equation reads

Mg(t) + My q(t) +V'(q) = £(¢). (2.3)
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A time-local friction term which is proportional to the velocity is usually called Ohmic
because of the correspondence with a series resistor in an electrical circuit. The dy-
namical equation (2.3) describes, for example, a heavy Brownian particle with mass
M immersed in a fluid of light particles and driven by a systematic force —V’(q),
where V/(g) is an externally applied potential. Equation (2.3) together with the re-
lations (2.1) and (2.2) forms the basis for the theory of Brownian motion since the
seminal studies by Einstein, Langevin and Smoluchowski. The early work on Brown-
ian motion theory was reviewed in an excellent article by Chandrasekhar (7],

In many cases of practical interest, the heat reservoir is a source of noise with a
finite memory time. For colored noise, the dynamics is described by the generalized
Langevin equation

Mi)+ M [ dte—t)i)+ V(@) = €6 (24)

The mean effect of the reservoir on the heavy particle is contained in the memory
friction force expressed in terms of the causal damping kernel, y(¢) = 0 for ¢t < 0.
The fluctuating force £(t) thus vanishes on average. The stochastic nature of £(t) is
again described by the autocorrelation function (£(¢)€(0))4. The frequency-dependent
damping coefficient’ [ ¥'(w) = Re J(w) and ¥"(w) = ImJ(w)]

(o o]

Yw) = Y(Ww)+:17'(w) = / dt y(t) e* (2.5)

—00

is connected with (£(£)€(0)), by the Green-Kubo formula [8]

) = g | 2 EOEONae. (2.6

Hence the power spectrum of the classical stochastic force

B = [Cax@eosen) = [ dEOecoswy @D

o0

is given in terms of the real part ¥'(w) of the damping function by the relation
Xy(w) = 2MkgTH (w) . (2.8)

This is a version of the classical fluctuation-dissipation or Nyquist theorem.

As any phenomenological equation, Eq. (2.4) has a restricted range of validity. It
can hold, at best, only for times long compared to the memory times of the environ-
ment, as it will become clear in Subsection 3.1.3. On the other hand, we expect that
at sufficiently low temperatures all types of quantum effects should occur. Now, since
the standard procedure of quantization relies upon the existence of a Lagrangian or
a Hamiltonian function for the system, the question arises: how can one reconcile
dissipation with the canonical scheme of quantization?

1Throughout this book, we use for the Fourier transform the normalization and sign convention
in the exponent as in Eq. (2.5).
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2.2 New schemes of quantization

The equation of damped motion (2.3) can not be obtained from the application of
Hamilton's principle unless the Lagrangian has an explicit time dependence. The use
of time-dependent Lagrangians or Hamiltonians would permit us to use the standard
schemes of quantization directly. Historically, the first researchers taking this path
were Caldirola [9] and Kanai [10] who employed a time-dependent mass chosen in such
a way that a friction term appears in the corresponding classical equation of motion.
However, this procedure does not properly handle the uncertainty principle [11]. As
the resumé of diverse studies, it is generally accepted now that dissipation cannot be
described adequately by simply introducing a time-dependent mass.

Many approaches to open quantum systems were introduced over the last thirty
years. The variety of attempts falls into three main categories. One either modifies
the procedure of quantization, or one uses the system-plus-reservoir approach, or a
stochastic Schrédinger equation for state vectors is employed. The third category is
discussed in Section 2.4. Among the first group, Dekker [12] proposed a theory with
a canonical quantization procedure for complex variables, thereby reproducing the
Fokker-Planck equation for the Wigner distribution function. However, some ad hoc
assumptions in the theory seem questionable, such as the introduction of noise sources
in the equations of position and momentum. Kostin [13] introduced a theory with
a nonlinear Schrédinger equation. The same equation was found later by Yasue [14]
using Nelson’s stochastic quantization procedure [15]. However, this theory violates
the superposition principle, and also yields some dubious results such as stationary
damped states. Apart from the fact that the theoretical foundations are completely
unclear, these approaches can reproduce, at best, known results only for very special
cases, such as weakly damped linear systems. Therefore, all attempts of the first group
can be assessed to have failed. We shall not consider them further here.

The more natural, and also more successful approach has been to regard the
system and the environment as the constituents of a conservative global system which
obeys the standard rules of quantization. In this picture, friction comes about by the
transfer of energy from the “small” system to the “large” environment. The energy,
once transferred, dissipates into the environment and is not given back within any
physically relevant period of time.

2.3 Traditional system—plus—-reservoir methods

Common approaches to open quantum systems based on system-plus-reservoir models
are generally divided into two classes. Working in the Schrédinger picture, the dy-
namics is conventionally described in terms of generalized quantum master equations
for the reduced density matrix or density operator [16] — [18]. Working in the Heisen-
berg picture, the description is given in terms of generalized Langevin equations for
the relevant set of operators of the reduced system [19] — [21].
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2.3.1 Quantum-mechanical master equations for weak coupling

The starting point of this method is the familiar Liouville equation of motion for the
density operator W (t) of the global system,

W = —(i/R)[HW(t)] = LW(), (2.9)

where H is the Hamiltonian of the total system, and where the second equality defines
the Liouville operator £. Next, assume that the Hamiltonian H and the Liouvillian
L of the total system are decomposed as

H = Hg+ Hg + Hy L = L+ Lg+ L. (2.10)

The individual parts refer to the free motion of the relevant system and of the reser-
voir, and to the interaction term, respectively. Employing a certain projection opera-
tor P, chosen as to project on the relevant part of the density matrix, the full density
operator is reduced to an operator acting only in the space of the macroscopically

relevant variables,
p(t) = PW(t). (2.11)

The operator p(t) is usually called reduced density operator. For systems with the
Hamiltonian form (2.10), the projection operator contains a trace operation over the
reservoir coordinates. By means of the projection operator P, the density operator
can be decomposed into the relevant part p(t) and the irrelevant part (1 — P)W (t),

W(t) = p(t)+ (1 -P)W(t); P?>=P. (2.12)

Upon substituting the decomposition (2.12) into Eq. (2.9), and acting on the resulting
equation from the left with the operator P and with the operator 1 — P, respectively,
we obtain two coupled equations for the relevant part p(t) and the irrelevant part
(1 — P)W(t). A closed equation for p(t) is obtained by inserting the formal integral
for (1 — P)W(t) into the first equation. We then finally arrive at the formally exact
generalized master equation, the Nakajima- Zwanzig equation [16, 17]

Ht) = PLp(t)+ / 4t PL expl(1— P)LE](1— P)L it — t)
+ PL exp|(1 — P)Ct](1- P)W(0) .

(2.13)

The generalized master equation is an inhomogeneous integro-differential equation
in time. It describes the dynamics of the open (damped) system in contact with the
reservoir R. Observe that the inhomogeneity in Eq. (2.13) still depends on the initial
value of the irrelevant part (1 — P)W(0). In applications, it is attempted to choose
the projection operator in such a way that the irrelevant part of the initial state
(1 — P)W(0) can be disregarded. Assuming further that P commutes with L£g one
then finds the homogeneous time-retarded master equation

pt) = P(Ls+ Ly)o(t) + / 4 PLATE (1 Pyt —f).  (214)
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The first (instantaneous) term describes the reversible motion of the relevant system
while the second (time-retarded) term brings on irreversibility. Equation (2.14) is
still too complicated for explicit evaluation. First, the kernel of (2.14) contains any
power of £;. Secondly, the dynamics of p at time ¢ depends on the whole history of
the density matrix. In order to surmount these difficulties, one usually considers the
kernel of Eq. (2.14) only to second order in £;. Disregarding also retardation effects,
one finally arrives at the Born-Markov master equation

t
pt) = P(Ls+Lyp(t) + / dt' PL el P TR (1 P)Lip(t) . (2.15)
0

Master equations of this form were successfully used to describe weak-damping phe-
nomena, for instance in quantum optics or spin dynamics. Various excellent reviews
of this sort of approach including many applications are available in Refs. [22] - [30].
While the Markov assumption can easily be dropped, the more severe limitation of
this method is the Born approximation for the kernel. The truncation of the Born
series at second order in the interaction £; effectively restricts the application of these
generalized master equations to weakly damped systems with relaxation times that
are large compared to the relevant time scales of the reversible dynamics.

In the eigenstate basis of Hg, the density matrix obeys in the Born-Markov limit
the so-called Redfield equations [31, 26, 32]

F-’nm(t) = _iwnmpnm(t) - Z anklpkl(t) : (216)
k|

The first term represents the reversible motion in terms of the transition frequencies
W,m, and the second term describes relaxation. The Redfield relaxation tensor reads

Ryt = Oim Z I‘v(':ﬂk + Onk Zrl(;-ln - I‘f?;lk - I‘I(;;an : (2.17)
r r

The rates are given by the Golden Rule expressions

o0
Miw = 17 [ dtem oty )1 s (0)
. - 3 (2.18)
Mo = 57 [ dte ity (O, (0)
0
Here, Hy(t) = exp(iHgt/R)Hyexp(—iHgt/h) is the interaction in the interaction

picture, and the bracket denotes thermal average of the bath degrees of freedom.

The Redfield equations (2.16) are well-established in wide areas of physics and
chemistry, e.g., in nuclear magnetic resonance (NMR), in optical spectroscopy, and in
laser physics. In NMR, one deals with the externally driven dynamics of the density
matrix for the nuclear spin [33, 34, 35]. In optical spectroscopy, a variant of the
Redfield equations are the optical Bloch equations [36, 37].

Multilevel Redfield theory has been applied to the electron transfer dynamics in
condensed phase reactions by several authors [38].
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Markovian reduced density matrix (RDM) theory has been also utilized in the di-
abatic state representation [39]. Denoting electronic-vibrational direct-product states
in the diabatic representation® by a, 3, - - -, the RDM equations of motion read

Paﬂ(t) = _1waﬂpaﬂ(t) - ﬁ z [Vaupuﬁ( uﬂpau t)] Z aﬂvapua t . (219)

The w,4 are the transition frequencies between unperturbed diabatic surfaces, the
V,s are the matrix elements of the diabatic interstate coupling, and the relaxation
tensor Rz, describes relaxation of the diabatic electronic-vibrational states. For
electron transfer processes, the diabatic surfaces can often be taken as harmonic,
which simplifies the calculation of the relaxation tensor drastically. The master equa-
tion (2.19) in the diabatic basis is especially useful when the interstate coupling is
weak or moderate. In contrast to Redfield theory in the system’s eigenstate basis,
the computation of the Redfield tensor in the diabatic basis, Eq. (2.19), is without
difficulties even for multimode vibronic-coupling systems [42]. When the RDM ap-
proach is applied to complex systems, the dimension N of the Hilbert space of the
relevant system Hg is possibly very large. Since the density matrix scales with N2
and the relaxation tensor with N* the computational problem may become easily
nontrivial. The so-called Monte-Carlo wave function propagation or quantum jump
method discussed below in Section 2.4, which is equivalent to the Born-Markov RDM
method, provides a considerably more favorable scaling of the computational costs
with the number of states than the direct integration of the Redfield equations.

Within the conception of quantum mechanics, the time evolution of the density
operator of a closed system is a unitary map. If the system is open, the possible
transformations are thought to be “completely positive” [43, 29], p — 3O, 00}.
Here {O,} is a set of linear operators on the reduced state space, restricted only by
3,010, =1, which guarantees that tr p does not change. The most general form of
generators L, p(t) = Lp(t), preserving complete positivity of density operators and
conveying time-directed irreversibility is established by the Lindblad theory [43]. The
Lindblad form of the quantum master equation for an open system reads

PO — Ly p(t)] + Z{[Ljp(t) L]+ (L p@Ll) - (220)

The first term represents the rever51ble dynamics of the relevant system. The Lindblad
operators L; describe the effect of the environment on the system in Born-Markov
approximation. In concrete applications of Eq. (2.20), the L; transmit emission and
absorption processes. For linear dissipation, the simplest form of a Lindblad operator
is a linear combination of a coordinate and a momentum operator [44],

L = pg+ivp, L' = pg—ivp, (2.21)
where g and v are c-numbers. Explicit temperature-dependent expressions for g and v
are obtained for the damped harmonic quantum oscillator by matching the dissipation

2The concepts of diabatic states are discussed in recent reviews [40, 41, 42].
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terms of the Lindblad master equation with corresponding expressions of this exactly
solvable model (cf. Chapter 6) in the Born-Markov limit [45].

Complete positivity of reduced density operators is considered as a strict guideline
by researchers working on stochastic Schrodinger equations (see Section 2.4). How-
ever, complete positivity of the RDM is an artefact of the product initial condition
W = p® pg for the global density operator, as shown by Pechukas [46, a]. Product
initial conditions are only appropriate to weak coupling. For correlated initial states,
the reduced dynamics need not be completely positive. This is consistent with the dis-
covery in Ref. [46, b] that a fast “slippage” of the initial condition must occur before
the reduced dynamics looks Markovian. The slippage captures the effects of the actual
non-Markovian evolution in a short transient regime (see also [46, c| ). The Markovian
master equation holds only in a subspace in which fast components are disregarded.
These findings have been confirmed in a recent study of the exactly solvable damped
harmonic oscillator [47]. Using the exact path integral solution, it has been shown
that in general there is no exact dissipative Liouville operator describing the dynam-
ics of the oscillator in terms of an exact master equation that is independent of the
initial preparation. Exact non-stationary Liouville operators can be found only for
particular preparations. Time-independent Liouville operators which are valid for ar-
bitrary preparation of the initial state can be extracted only in a sub-space where the
fast transient components have already decayed. However, the Liouville operators are
still not of the Lindblad form. The Lindblad master equation is obtained only when
the weak-coupling limit is performed and a coarse graining in time is carried out. It
is perfectly obvious from the study of this exactly solvable model that one should not
attach the fundamental significance to the Lindblad master equation as attributed
by circles of the “stochastic Schrédinger equation” community. Besides the Markov
approximation and the weak-coupling limit, there is another severe limitation of the
usefulness of the above quantum master equations. Namely, the relaxation dynamics
towards the equilibrium state p, = PWp [Wj = Z;' exp(—@H) is the canonical
equilibrium density matrix of the global system | is correctly described only when the
system’s relaxation times are large compared to the thermal time #3. The latter time
scale enters into the problem through the Matsubara frequencies. However, this lim-
itation is easily violated for low temperatures, in particular when relaxation occurs
by quantum tunneling (cf. , e.g., the discussion in Chapters 6 and 17).

In conclusion, the Born-Markov quantum master equation method provides a
reasonable description in many cases, such as in NMR, in laser physics, and in a
variety of chemical reactions. However, this method turned out to be not useful in
most problems of solid state physics at low temperatures for which neither the Born
approximation is valid nor the Markov assumption holds.

2.3.2 Operator Langevin equations for weak coupling

Just as we projected the density matrix W(t) of the global system onto the relevant
part p(t), we may proceed in the Heisenberg picture by projecting the operators of
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the global system on the set of macroscopically relevant operators. The various efforts
in studying the dynamics of these operators have been described by Gardiner [49].

Let us denote the set of operators of the global system by {X} and the set of
macroscopically relevant operators governing the open system by {Y}. Now consider
the operators X; and Y, as elements |X;) and |Y,) in the Liouville space A.3 At time
t = 0, the operators {Y'} span a subspace Ay of the Liouville space A. We use the
convention that an operator in the Heisenberg representation without time argument
denotes the operator at time zero. Next, it is convenient to define a time-independent
projection operator which projects onto Ay,

P=YIMe; P =pP. (2.22)
v

The metric g, is the inverse of the scalar product (Y,|Y;) which has to be chosen
appropriately in practical calculations. For quantum statistical linear response and
relaxation problems, a suitable form is the Mori scalar product {21, 48]

(%) = 7 [ Bl expl-A) Y] expA BT, (229

The angular brackets denote average with respect to the canonical ensemble of the
global system W = Z5 'exp(—BH), and B = 1/kyT. The superoperator P projects
onto the subspace Ay according to

PIX) = Y 1Y) 0w (V1X) - (2.24)

8%
Acting now from the left with P and with 1 —7P on the Heisenberg equation of motion
1X:) = L]X:), (2.25)

where L is the Liouville superoperator, and eliminating (1 — P)|X;) with the aid
of the exact formal solution, it is straightforward to derive for Y,(t) the generalized
Langevin equation

) = i 0000 -3 / SVt - ) mls) 16 . (226)

These equations form a system of coupled integro-differential equations for the set of
operators {Y'}. They have been popularized in the literature as the Mori equations.
The generally temperature-dependent drift matrix ,,(t) is given by

i) = 3 0 (V1Y) (2.27)

The stochastic force &,(t) is a functional of the irrelevant operators,

3See Ref. [48] for a review of the formulation of quantum mechanics in Liouville space.
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£,(t) = exp[(1 —P)Lt](1 - P)X,(t) . (2.28)

Finally, the memory matrix is expressed in terms of the correlation function of the
stochastic force as

You(t Z 9uo(ol€u(t)) - (2.29)

The actual computation of the ﬂuctuating force and of the memory matrix is again
restricted to weak coupling. Altogether, this approach is subject to exactly the same
limitations we encountered above in the master equation method.

In conclusion, it is important in the Mori formalism that the complete set of
macrovariables spans the subspace. Otherwise, the fluctuating force contains slowly
varying components, and the separation of time scales is incomplete.

2.3.3 Quantum and quasiclassical Langevin equation

One further approach consists in attempting to generalize the classical Langevin
equation for a Brownian particle to the quantum case [20, 50, 51]. The quantum
mechanical version of the Langevin equation for the coordinate operator reads?

di;‘;gt) +M/ dt' y(t —t') d(t,) +V'@) = ), (2.30)

where £{ (t) is the Gaussian random force operator with correlation expectation value
[we define (O) = try {e PR} where R refers to the reservoir]

(E()E(D)) = ———] dw wv' w) coth(whpB/2) cos(wt) —zsm(wt)) (2.31)

The equation (2.30) can be derived, e. g., for the linear response oscillator model
discussed below in Sectlon 3.1 [50]. One can even show that the form (2.31) of the
correlation is a general result of the fluctuation-dissipation theorem (cf. Section 6.2)
and is therefore independent of the model.® Benguria and Kac [52], and Ford and
Kac [50] argued that the system approaches the correct equilibrium state for the
form (2.30) with (2.31) and Gaussian noise. Recently, the quantum Langevin equation
(2.30) has been derived for the white-noise case from the Feynman-Vernon forward-
backward path integral discussed below in Section 5.1 [53].

In the quasiclassical Langevin equation (QLE) [19, 54], the operator-valued quan-
tities in Eq. (2.30) are replaced by c-numbers, but the Gaussian property of the
stochastic force and the correlation (2.31) are retained. We then end up at the gen-
eralized classical Langevin equation (2.4) in which the power spectrum of the sym-
metrized force autocorrelation function has the quantum mechanical form

X(w) = /—00 dt (£(t)€(0)) cos(wt) = Mhw coth (22}) ¥ (w) . (2.32)

4Here we dropped a term which depends on the initial condition and which decays on a time
scale given by the memory time of the reservoir (See the discussion in Subsection 3.1.3).

5The Gaussian property of the force operator does not seem to follow from such general consid-
erations, but is implied by a harmonic oscillator reservoir.
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In Section 5.5 we briefly sketch the derivation of the QLE within the path inte-
gral method following the approach by Schmid [54]. It will become clear from the
derivation that the QLE is exact (apart from disregarding a term describing the ini-
tial transient behavior) when the external force is harmonic (see also Ref. [19]). The
QLE gives a reasonable description for systems which are nearly harmonic [55, 56].
However, the predictions of the QLE are unreliable when the unharmonicity of the
potential is of crucial importance like, for instance, in quantum tunneling. The mere
insertion of the quantum noise (2.32) into a classical equation is insufficient to render
a proper description of the quantum statistical decay of a metastable state [55].

When the unharmonicity of the potential is relevant, the most successful approach
is the functional integral description. Like in the classical regime, the dissipative
system is considered to interact with a complex environment, and the “complete
universe” formed by the system plus environment is assumed to be conservative so
that it can be quantized in the standard way. For equations of motion which are linear
in the bath coordinates, the environment can easily be eliminated. Thus one obtains
closed equations for the damped system alone. In the path integral description, the
environment reveals itself through an influence functional depending on the spectral
properties of the environmental coupling and on temperature. A general discussion
of the influence functional method is presented in Chapters 4 and 5.

2.3.4 Phenomenological methods

Often, a physical or chemical system cannot be characterized by a simple model
Hamiltonian of the form (2.10), or the Hamiltonian is simply unknown. In such sit-
uations, it is sometimes useful to describe the dissipative quantum dynamics on a
phenomenological level. For instance, one may introduce a dynamical description of
the system in terms of occupation probabilities p,(t) of energy levels or of spatially
localized states, etc., rather than in terms of complex probability amplitudes or wave
functions, or the full reduced density matrix p, .. Then, the relaxation dynamics of
a macroscopic system is described by a Pauli master equation for p,(t) = p,,.(t),

Pat) = O [ApnPn(t) = Annpa(®)] . (2.33)

The first term on the r.h.s. describes the gain and the second term the loss of prob-
ability in the state n. In this formulation, knowledge of the full set of transition
rates {A,,,} is requisite in order to have a complete description of the relaxation
process. The transition rates may be inferred, e. g., from standard quantum mechan-
ical perturbation theory, or from experimental data, or they may be chosen by a
phenomenological ansatz. The Pauli master equation (2.33) has found widespread
application to the study of rate dynamics in physics, chemical kinetics, and biology.
In the quantum coherence regime, off-diagonal matrix elements of the density
matrix become relevant. Nevertheless, the full coherent dynamics of the populations
can still be formulated in terms of dynamical equations for diagonal matrix elements.
However, the corresponding master equation is time-nonlocal (see Section 21.3).
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2.4 Stochastic dynamics in Hilbert space

In recent years, there have been made numerous attempts to postulate non-
Hamiltonian dynamics as a fundamental modification of the Schrédinger equation
in order to explain the spontaneous stochastic collapse of the wave function and the
appearance of a “classical world” (cf. for a survey the article by 1.-O. Stamatescu in
Ref. [57]). In these approaches, the non-unitary dynamics of open quantum systems
is interpreted in terms of a fundamental stochastic process in the Hilbert space of
state vectors pertaining to the system. To retain the standard probability rules, the
respective dynamical equations become inevitably nonlinear. The evolution of state
vectors is considered as a stochastic Markov process, and the covariance matrix of
the state vector is taken as the density operator. The stochastic process is usually
constructed in such a way that the equation of motion of the density operator is
the familiar Markovian quantum master equation in Lindblad form (2.20), e.g., the
optical Bloch equations [36, 37]. First of all, the approaches of this type were intro-
duced on phenomenological grounds. Later on, a fundamental significance has been
allocated to the “stochastic Schrodinger equations” by several authors, in particular
to propose explanation of the omnipresent decoherence phenomena observed in real
quantum systems. The above scheme does not lead to a definite stochastic representa-
tion of the dynamics of the reduced system in Hilbert space, even though the Markov
approximation is made, since the stochastic process is not unambiguously determined
by merely fixing the covariance. An infinity of different realizations is possible. Basi-
cally, one may distinguish two classes of stochastic models for the evolution of state
vectors in the Schrodinger picture. In the first class of stochastic Schrodinger equa-
tions, the stochastic increment is a diffusion process, the so-called Wiener process.
In the second class, the evolution of the state vector is represented as a stochastic
process of which the realizations are piecewise deterministic paths, and the smooth
segments are interruped by stochastic sudden jump processes [58].

The quantum-state diffusion (QSD) method proposed by Gisin [59] and developed
further by Gisin, Percival and coworkers [60, 61] belongs to the first class. The QSD
method is based upon a correspondence between the solutions of the master equation
for the ensemble density operator p and the solutions of a Langevin-Ito diffusion
equation for the normalized pure state vector |y > of an individual system of the
ensemble. If the master equation has the Lindblad form (2.20), then the corresponding
QSD equation is the nonlinear stochastic differential equation

by > = —ZHlp>de+ Y (<Ll >L-3L - <L) >< L;> )y > dt

J
+3° (L,.— <L;> )ld) > de; , (2.34)

j
where < L; >=<|L;|¥ > is the quantum expectation.® The first sum describes the
nonlinear drift of the state vector in the state space and the second sum the random

§We constantly use the symbol |--- > for a pure state, and (- --) for an ensemble average.
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fluctuations. The df; are complex differential variables of a Wiener process satisfying

(dg;) =0, (d;dg,) =0, (dg; d&,) = 8;,. dt (2.35)

where (--:) represents a mean over the ensemble. The density operator is given by
the mean over the projectors onto the quantum states of the ensemble

p= (l><vl). (2.36)

A relativistic quantum state diffusion model has been proposed in Ref. [62].

There have been made also attempts to describe the stochastic evolution of the
state vector in terms of a stochastic differential equation with a linear drift [63].

The Monte-Carlo wave function simulation or quantum jump methods proposed
by Diési [64], by Dalibard, Castin, and Mglmer [65], by Zoller and coworkers [66], and
by Carmichael et al. [67] belong to the second class. In these related methods, the
Schrodinger equation is supplemented by a non-Hermitean term and by a stochastic
term undergoing a Poisson jump process. Because of the non-unitary time evolution
of the state vector under a non-Hermitean Hamiltonian, the trace of the density
operator is no more conserved. Conservation of probability is restored again and
again by imposing stochastically chosen quantum jumps (see Refs. [65, 66, 68]). In
the Monte Carlo algorithm by Mglmer et al. [69], the deviation of the norm ép of
the wave function from unity after a certain time step is compared with a number ¢,
which is randomly chosen from the interval [0, 1]. If dp > €, a quantum jump occurs
by which the wave function is renormalized to unity. A comparison of some of the
quantum jump and state diffusion models was given in Ref. [70].

Recently, Breuer and Petruccione showed that a unique stochastic process in
Hilbert space for the dynamics of the open system may be derived directly from
the underlying microscopic system-plus-reservoir model [71]. They employed a de-
scription of quantum mechanical ensembles in terms of probability distributions on
projective Hilbert space. In order to eliminate the reservoir, they made the Markovian
approximation, and they employed second-order perturbation theory in the system-
reservoir coupling. They then obtained a Liouville-master functional equation for the
reduced probability distribution. The Liouville part of this equation corresponds to a
deterministic Schrodinger-type equation with a non-Hermitean Hamiltonian which is
intrinsically nonlinear in order to preserve the norm. The master part of this equation
describes gain and loss of the probabilities for individual states due to discontinu-
ous quantum jumps. In this description, the realization of the stochastic process is
very similar to those generated by the piecewise deterministic quantum jump method
[65] — [67]. Therefore, the stochastic simulation algorithms of all these approaches are
very similar likewise. The equation of motion for the reduced density matrix derived
from the Liouville-master equation is exactly of the Lindblad form (2.20).

In the first place, the stochastic wave function methods are computational tools
with which the solution of the Born-Markov master equation is simulated by using
Monte Carlo importance-sampling techniques [68]. The stochastic methods are nu-
merically superior to the conventional integration of the master equation when the
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rank of the reduced density matrix is large. Over and above the computational ad-
vantage of stochastic wave function methods for Born-Markov processes, some groups
are presuming to claim that the instantaneous discontinuous processes are real and
provide a natural description of individual quantum jump events (and not only of
their statistics) as observed, e.g., in experiments with single ions in radio-frequency
traps [72, 73]. Against that, we wish to point out that the assignment of definite
states to a subsystem is incompatible with standard quantum theory, and has been
proven wrong, e.g., in Einstein-Rosen-Podolsky experiments. Moreover, there is no
experimental indication for non-standard phenomena (e.g., spontaneous collapse) in
connection with the explanation of classical properties. Hence there is no phenomeno-
logical necessity for the introduction of a stochastic equation for state vectors.

Besides computational advantages in the simulation of Born-Markov processes,
the quantum-state diffusion method provides an alternative approach to measurement
theory. In this method, a continuous measurement process, by which the system is
steadily reduced within a certain time period to an eigenstate, is an integral part
of the dynamical description. In conclusion, the stochastic wave function approaches
provide efficient numerical simulations of quantum master equations which are of the
Lindblad form. However, since the Markov and the Born approximation are made,
the application of these methods to solid state physics problems is as limited as the
Born-Markov quantum master equation approach.

In the sequel, we move on firm ground taking the conservative view that the Hamil-
tonian dynamics of a global system induces a non-unitary dynamics for a subsystem.

3. System—plus-reservoir models

For many complex systems we do not have a clear understanding of the microscopic
origin of damping. However, sometimes one might be able to acquire knowledge of
the power spectrum of the stochastic force in the classical regime. Therefore, it is
interesting to set up phenomenological system-plus-reservoir models which reduce in
the appropriate limit to a description of the stochastic process in terms of a quasi-
classical Langevin equation of the form (2.4). The simplest model of a dissipative
quantum mechanical system that one can envisage is a damped quantum mechanical
linear oscillator: a central harmonic oscillator is coupled linearly via its displacement
coordinate q to a fluctuating dynamical reservoir or bath. If the bath is only weakly
perturbed by the system, 1t can be considered as linear and therefore be described
by harmonic oscillators. Then the statistics is exactly Gaussian. This model has
been introduced and discussed in a series of four papers by Ullersma [74]. Zwanzig
generalized the model to the case in which the central particle moves in an anharmonic
potential and studied the classical regime [75]. Caldeira and Leggett [76] were among
the first who applied this model to quantum mechanical tunneling of a macroscopic
variable. The relevant model is considered in this chapter.
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In the first section of this chapter we introduce the model and we track down the
relations between the parameters of the model and the quantities appearing on the
classical phenomenological level. Subsequent to this, we discuss a number of physically
important particle-reservoir systems for which we can base the description to some
extent on a microscopic footing. We cannot, in this chapter, deal with these systems in
any detail. We shall only outline the underlying Hamiltonians and postpone the path
integral formulation of the quantum statistical mechanics until the next chapter. In
the last section, we briefly go into the discussion of nonlinear quantum environments.

3.1 Harmonic oscillator bath with linear coupling

In this section, we first introduce the most general Hamiltonian underlying a dissipa-
tive system obeying Eq. (2.4), and explain the important generalization to the case
where the viscosity is state-dependent. After that, we determine the relation between
the parameters of the global model and the phenomenological frequency-dependent
friction coefficient y(w).

3.1.1 The Hamiltonian of the global system

Consider a system with one or few degrees of freedom which is coupled to a huge
environment and imagine that the environment is represented by a bath of harmonic
excitations above a stable ground state. The interaction of the system with each
individual degree of freedom of the reservoir is proportional to the inverse of the
volume of the reservoir. Hence, the coupling to an individual bath mode is weak for
a geometrically macroscopic environment. Therefore, it is physically reasonable for
macroscopic global systems to assume that the system-reservoir coupling is a linear
function of the bath coordinates. This property is nice since it allows to eliminate
the environment exactly. Importantly, the weak perturbation of any individual bath
mode does not necessarily mean that the dissipative influence of the reservoir on the
system is weak as well since the couplings of the bath modes add up and the number
of modes can be very large.

The most general form of the Hamiltonian for the global system complying with
these properties (barring pathological cases) is (see Ref. [76], Appendix C)

H = HS+HR+HI’ (3.1)
where
Hs = p*/2M +V(g) (3.2)
is the Hamiltonian of the relevant system with a generalized coordinate g,
N
192 1 2)
Hy = =22 4wl 3.3

describes the reservoir consisting of N harmonic oscillators, and
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N
H = =) F,(q)z, + AV (q) (3.4)
a=1

is the interaction term which by construction is linear in the bath coordinates. For
later purposes, we have added a counter-term AV(q) which depends on the param-
eters m,, w, of the environment, and on F,(q), but not on the dynamical variables
z, of the reservoir. The additional potential term AV (q) is introduced in order to
compensate a renormalization of the potential V(g) which is caused by the linear
coupling in z, in Hj [the first term in Eq. (3.4)]. In the absence of AV(g), the mini-
mum of the potential surface of the global system for given ¢ is at z, = F,(q)/m w2
for all a. The “effective” potential renormalized by the coupling is then given by

N 2
Vaar(a) = V(e) - ) 21;;':(1)2 :

a=1

(3.5)

In the special case F,(q) = coq, the second term in Eq. (3.5) causes a negative shift
(Aw)? = -3, c2/Mm w2 in the squared frequency w? of small oscillations about
the minimum. Such coupling-induced renormalization effects can be very large, and if
w2s = wi+(Aw)? < 0, they even change the potential qualitatively. If we wish that the
coupling to the reservoir solely introduces dissipation — and not a renormalization

of the potential V(¢) — we must compensate the second term in Eq.(3.5) and put
Fi
AV(g) = Y Fala) (3.6)

The special case of a separable interaction
Fo(q) = c F(q) (3.7)

with F(q) independent of a is of particular interest. Thus, considering a system
weakly coupled to its environment as specified above, the most general translational
invariant Hamiltonian with a separable interaction is

H = p2+V()+1§: Pa | mw? e p(g)) (3.8)
T 2M K 24| m, Maa | Ta m w2 1 ' '

For a nonlinear function F(q), the open system undergoes a state-dependent dis-
sipation process. This case is important, e.g., for rotational tunneling systems. It has
been argued [77] that the periodicity of a hindering potential in a rotational tunnel-
ing system is an exact symmetry which cannot be destroyed whatever the external
influences are. The argument applies when several identical particles are tunneling at
the same time, as e.g., in a rotating molecule complex. If there are N identical parti-
cles coherently tunneling [e.g., N = 3 for a methyl-(C H3-)group], both the potential
V(p) and the coupling function F(p) [¢ is the dynamical angular variable] belong to
the same symmetry group Cy, i.e., V(¢) = V(¢ +2x/N) and F(p) = F(¢+ 2r/N).
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Quasiparticle tunneling in Josephson systems is another important case. Then
the coordinate ¢ is again identified with a phase variable ¢. In a phenomenological
modeling of charge tunneling between superconductors the interaction term is [78]

H; = sin(p/2) ) ez +cos(p/2) Y P, (3.9)

where {2} and {z} represent two independent sets of oscillators. For a discussion

of the microscopic theory, see Subsection 4.2.10.
If we require that the dissipation be strictly linear, we must constrain F_(q) as

F,(q) = ¢c,q, (3.10)
which is the case of state-independent dissipation. The form (3.10) describes an ideal
measurement of the particle’s position by the reservoir in von Neumann’s sense.

Substituting Eq. (3.10) into Eq. (3.1), the Hamiltonian takes the form

2

H———+V(q 22[—-+mw (”a_mizqu)z]' (3.11)

For later convenience, we rewrite the Hamiltonian (3.11) as
H =
2 ¥ Z 3m

Vige) = V(q)+§Zmaw§ (xa— “ ) - (313)

2
m wi

x), (3.12)

Here, V(q, x) is the potential of the global system, and & represents the set of bath
coordinates {z,}. The Hamiltonian (3.11) has been used to model dissipation for
about thirty years. Early studies were limited to a harmonic potential V(q). Probably
the first who showed that Eq. (3.11) leads to dissipation was Magalinskij [79]. Shortly
later studies include the work by Rubin [80] for classical systems, and Senitzky [19],
Ford et al. [20], and Ullersma [74] for quantum systems. In the more recent literature,
the model described by Eq. (3.11) is often referred to as the Caldeira-Leggett model.

3.1.2 The road to the classical generalized Langevin equation

The equations of motion for a global system described by the Hamiltonian (3.8) read
Mi+V'(q)+ ) (/mewl) F(9)F'(g) = Z aTa » (3.14)
(14

m %, + mwir, = c,F(q), (3.15)

[13

where V'(q) = 0V/0q and F'(q) = 0F/0q. The dynamical equation for the oscillator
position z,(t) is an ordinary second order linear differential equation with inhomo-
geneity c,F(q). This can be easily solved for « (t) by standard Green’s function

techniques. The solution for general initial values z&' and P at t = 0 reads
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(0)
z,(t) = z® cos(wat)+ 22— sin(w,t)+

[2 a4 ] oo

Ca

fo "t sinfw, (¢—t')] Flg(t)] . (3.16)

Next, it is convenient to rewrite Eq. (3.16) as a functional of the particle’s velocity.
Integrating the last term by parts, we get

(0)

Zo(t) = 7L cos(w,t) + Po_ sin(w,t) + cc:uz (F [q(t)] — cos(w,t)F [Q(O)])
- mcuﬂ / dt’ cos| w,(t — t')] F'[g(t)]4(t) . (3.17)

We can eliminate the bath degrees of freedom by substituting Eq. (3.17) into Eq.
(3.14). Then, the last term of the Lh.s. in Eq. (3.14) originating from the counter
term in Eq. (3.4) cancels out. The dynamical equation for ¢(t) alone is found to read

mi(t) + MFlo) [ e At — ) F g alt) + V'(q)

(3.18)
= — MF'lq(t)]y(t)F|q(0)] + F'lq(t))C(t) .
Here we have introduced the memory-friction kernel
yit—t) = O@—t) )37 Z cos[w (t—t), (3.19)
and the force p(o)
_ (0) o .
¢(t) an (:ca cos(w,t) + — sm(wat)) : (3.20)

o

Taking the average of the initial values xf,o), p) with respect to the canonical

classical equilibrium density of the unperturbed reservoir

(0)

PR = exp{ ﬁZ( o 53’2)] , (3.21)

the force {(t) becomes a fluctuating force with colored noise and Gaussian statistical
properties [ for a generalization to the quantum regime, see Eq. (2.31)]

K)o =0, (CEXEN) 0 = MkgTy(t - t). (3.22)

The second relation is the classical fluctuation-dissipation theorem.

The dynamical equation (3.18) is a Langevin-type equation with a memory-
friction force and a random force. When F'(q) is g-dependent, the damping force
in Eq. (3.18) describes nonlinear (state-dependent) memory friction and the random
force exhibits multiplicative noise. As important examples for state-dependent noise,
we mention quasiparticle tunneling between superconductors and strong electron tun-
neling through a mesoscopic junction [cf. Subsections 4.2.10 and 5.5.3].
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In the remainder of this subsection, we restrict the attention to the case of linear
dissipation, F(q) = q. Then, the dynamical equation (3.18) reduces to an ordinary
Langevin equation with a linear memory-friction force and additive noise,

M)+ M [ iyt - O)it) + V(e = C() - Mr(Da0).  (329)

The stochastic equation of motion (3.23) still contrasts with the usual form of the
Langevin equation by the spurious term —M~(t)q(0). This term is a transient de-
pending on the initial value ¢(0).

Upon strengthening an observation by Bez [81], it has been argued [82] that the
initial transient slippage is an artefact of the decoupled thermal initial state (3.21).

The annoying term in Eq. (3.23) can be eliminated by a suitable definition of the
thermal average as follows. In the first step of the elimination, the term —M~(t)q(0)
is absorbed by a corresponding shift of the random force ((t),

£(t) = ¢(t) — M~(t)q(0) - (3.24)

The modified random force £(t) does not vanish on average when the mean value

is taken with respect to p;’ In the second step, £(t) is reconciled with the usual

properties of a Gaussian random force by performing the thermal average in the
initial state of the reservoir with the shifted canonical equilibrium distribution

PR = exp{ B Z[ o’ ( - i‘:ugq(O))z]}- (3.25)

Upon averaging z and p? with the weight function (3.25), the random force £(t)
exhibits proper statistical behavior,

(€()p, = 0, (€W ) oy = MEgTH(t—1). (3.26)

Thus we arrive at the standard form of the generalized Langevin equation,

-

2

Mi(t) +V'(g) + M fo tdt’v(t-t’)q(t’) = £(t) - (3.27)

From the above we see that care has to be taken if one refers to statistical proper-
ties of a random force [82]. We have been able to remove the initial transient slippage
by taking the thermal average in the initial state with respect to bath modes which
are shifted by the coupling to the particle.

3.1.8 Phenomenological modeling

For a small number N of bath oscillators, the time on which the transferred energy is
feeded back to the small system is of the order of other relevant time scales. However,
when N is about 20 or larger, the Poincaré recurrence time is found to be practically
infinity. Then we may take the limit N — oo and replace the sum of bath modes



3.1. HARMONIC OSCILLATOR BATH WITH LINEAR COUPLING 23

by an integral over a continuous spectral density. With these preliminary remarks,
it is straightforward to establish the connection of the frequency-dependent damping
coefficient (w) defined in Eq. (2.5) with the parameters of the Hamiltonian (3.8) or
(3.11). The Fourier transform of the retarded memory-friction kernel (3.19) is

W 2 1
Y(w) = lim —i— = . 3.28
Yw) oot M ; mw? w2 — w? — iesgn (w) (3:28)

In order to deal with a real heat bath causing dissipation, we introduce the spectral
density of the environmental coupling

s c2
J(w) = EZ 2w - wa), (3.29)

m,w,

and we eventually regard J(w) as a smooth function of w. In the continuum limit,
the sum in Eq. (3.28) is replaced by the integral

Y(w) = lim _—WE/wdw' J (W) ! (3.30)

W' w'?—-w?—desgn(w)’

By this extension, the function J(w) acquires a smooth real part,
¥(w) = J(w)/Mw . (3.31)

For frequency-dependent damping, it is sometimes convenient to consider the
Laplace transform ¥(z) of the damping kernel y(t). The damping functions 5(z) and
¥(w) are related by analytic continuation,

3(2) = Fw=i2);  Aw) = lim 3z = —iw+e). (3.32)

According to Eq. (3.30) we then have

N 2 00 1
~ 2 c 1 z 2 Jw) 1
= E = = —— dw'’ . :
72) mow? (w2 + 22) M~ /0 YT T2 (3.33)

As far as we are interested in properties of the particle alone, the dynamics is
fully determined by the mass M, the potential V'(g), and the spectral density J(w).
We see from Eq. (3.31) that J(w) is uniquely determined by the classical frequency-
dependent damping coefficient F(w). With the roles reversed, we can also express
the microscopic characteristics in terms of the phenomenological real-time damping
kernel y(t). Using Eq. (3.30), we can give the damping kernel ~(t) in terms of the
spectral density J(w) of the environmental coupling,

y(t) = Of(t) -jflf ;/:o dw J‘(:J) cos(wt) . (3.34)

The inversion of the Fourier integral (3.34) gives
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J(w) = Mw /000 dt v(t) cos(wt) . (3.35)

The spectral density J(w) may also be expressed in terms of the Laplace transform
of the damping kernel. From Eq. (3.35) we find

J(w) = 1_1)153r Muw[7(e + iw) + F(e — iw)]/2. (3.36)

We conclude with an important remark: The spectral density J(w), and later on
quantum mechanics, is determined by quantities that appear already in the classical
phenomenological equation of motion [83, 84]. This property holds in the case of strict
linear dissipation, i.e., damping itself does not depend on the state of the system. For
instance, a conventional molecular dynamics simulation may be used to compute
¥'(w), which then determines J(w) by Eq. (3.31). Therefore, this relation plays a
fundamental role in the phenomenological modeling of dissipative quantum systems.

3.1.4 Ohmic and frequency-dependent damping

In the strict Ohmic case (Markovian limit), damping is frequency-independent,
W) = 7. (3.37)

We see from Eq. (3.35) or from Eq. (3.36) that strict Ohmic damping is described by
the model (3.11) with the spectral density J(w) in the form [76]

/ Jw) = nw = Myw (3.38)

for all frequencies w. In the first equality, we have introduced the familiar viscosity
coefficient 7. The relation (3.38) implies memoryless friction y(t) = 2v4(t).! This,
of course, is an idealized situation. In reality, any particular real spectral density
J(w) falls off in the limit w — oco. Otherwise, certain physical quantities, e.g. the
momentum dispersion, would diverge (cf. the discussion in Section 7.3). There is
always a microscopic memory time setting the time scale for inertia effects in the
reservoir. In the simplest form, the damping kernel v(t) in the classical equation of
motion (2.4) is regularized with a memory time 7, = 1/wp,

7(t) = 7wpO(t) exp(~wpt) (3.39)
which is known as Drude regularization. We then have
Fw) = v/[1-iw/wp], and  F(z) = v/[1+z/wp]. (3.40)

For this choice, the imaginary part of ¥(w) is smaller than the real part by a factor
of w/wp. The Drude form (3.40) comes from a spectral density with algebraic cutoff,

'In the integral in Eq. (2.4) the d-function counts only half, and thus the damping term reduces
to the Ohmic form M+y¢(t) in Eq. (2.3).
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J(w) = Myw/[1+w?/uf]. (3.41)
The damping kernel brings in memory-friction effects on the time scale 7, = wp'.
When the relevant frequencies of the system are much lower than the Drude cutoff
frequency wp,, the reservoir described by (3.41) behaves like an Ohmic heat bath with
effective damping strength y,q = [, dt y(t) = v.

Next, consider the extension to general frequency-dependent damping. It is con-
venient to assume (though it is not strictly necessary) that the function J(w) has
a power law form at low frequencies, J(w) o w®. It will become clear later on that
the dissipative influences can be classified by the power s. Negative values of s are
excluded since otherwise the counterterm (3.6) or the quantity v(0) would diverge
which is pathological. The power-law form is assumed to hold in the frequency range
0 < w S we, where w, is much less than a characteristic cutoff frequency wa,, which is
of the order of the Drude, Debye, or Fermi frequency etc., depending on the model.
For frequencies of the order of or greater than wa, the behavior of J(w) may be
complicated and may not easily be inferable either from the classical motion or from
microscopic considerations. However, the important point now is that, as long as we
are interested in times ¢ 3> w_!, the effect of the environmental modes with w R w;
can be absorbed into a renormalization of parameters appearing in the Hamiltonian
Hg of the system. The only additional property we need to postulate is that J(w)
falls off at least with some negative power of w in the limit w — oo. The minimal
decrease of J(w) required depends on the physical quantity under consideration.

To make the discussion quantitative, we decompose J(w) into a low-frequency and
a high-frequency contribution,

JW) = Jiw) + Iw), (3.42)
hew) = J@)fw/w,), (3.43)
hew) = JW)[1— fw/wa)]. (3.44)

Here, f(w/w,) is a cutoff function defined in such a way that Ju¢(w) is negligibly small
for w < w, and Jig(w) negligibly small for w > w,. Depending on convenience, we
may choose either a sharp cutoff f(w/w;) = ©(1 —w/w,), or a smooth exponential or
algebraic cutoff. Expedient forms are a Gaussian, an exponential, or the Drude form
Fw/w)) = 1/[1+ @/w?).

We shall consider in most applications the case in which Ji;(w) has a power-law
form with an exponential cutoff,

Je(w) = ﬂ,w;;’ws e /v , N, = Mny, . (3.45)
Here we have introduced for s # 1 a “phononic” reference frequency wy,, so that the
coupling constant 7, has the usual dimension of viscosity for all s. We shall distinguish
the frequency w,;, from the cutoff frequency w,. For notational convenience, we shall
sometimes use the corresponding temperature scales
T, = hw,,/kyg, T, = hw/kg . (3.46)

P
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In many physical situations, the frequency w_ at which the power law Ji(w) x w*
is cut off is very large compared with all other relevant frequencies of the system. A
number of analytic results will be available in this limit.

The partial spectral density Ju¢(w — 0) ox w*® contributes to the damping function
¥(w) in the limit w — 0 the term

Mew = 0) = —iwAMy/M, (3.47)
AMy = 2 / dw'-——‘]"f(,‘;’), (348)
T Jo w

as follows from (3.30). With (3.47), the Fourier transform —iw¥(w)q(w) of the
memory-friction force reduces at low frequencies to the form —A My w?q(w). This
term, however, may be added to the kinetic term —Mw?q(w). Thus for times ¢ > w?,
the partial spectral density Ji¢(w) manifests itself simply as mass renormalization,

M, = M+ AMy . (3.49)

From this we conclude that if we are not interested in the time regime ¢t < 1/w,
we may treat Jy¢(w) in the adiabatic approximation. If not stated differently, we will
eliminate J,;(w) from the explicit description, and we will regard the mass M as a
renormalized mass which is already dressed by the reservoir’s high-frequency modes.

The integral (3.48) is convergent also for the spectral density Jis(w) when the
power s in Eq. (3.43) is larger than 2. For this case, the full spectral density results
in no more than mass renormalization for times ¢ — o0o. Further discussion of this
" point is given in Section 7 .4.

Upon inserting the form (3.43) of the spectral density with a sharp cutoff into the
representation (3.33), the spectral damping function takes the exact form [85]

~ 27, (wc )’ﬂl We 1 1 2/.2
= —,F (1, =81+ 35, — , 3.50
'y(z) s \w, 7 2 1( 2 + 38 ‘Uc/z ) ( )

where ,F,(a, b; ¢; z) is a hypergeometric function [86]. The explicit form of the spec-
tral damping function 5(z) for z < w, is found from the asymptotic expansion of the
hypergeometric function. This may be calculated upon using standard transformation
formulas of the hypergeometric function. Putting A, = -,/ sin(ns/2), we find

(X, (2/wg)" ™", 0<s<?2,
J (’Yz/”)(z/wph) In(1 +W¢2/32) ) s=2,

2 [AM/M + (A/weg)(2/w )2 + O (w—)] . 2<s<4,

\ z[AM/M+O(;—;)] , s>4.

In the regime 0 < s < 2, we have disregarded terms depending on w,. From these
results we see that in the most interesting regime 0 < s < 2 the damping function
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M f m
Figure 3.1: Pictorial sketch of the mechanical analogue of the Rubin model.

4(z) behaves as z*~!. In the case 2 < s < 4, we have also given the next to leading
order term in order to study the behavior beyond simple mass renormalization. This
term is relevant in the transient time regime.

As we have discussed already, the case s = 1 in Eq. (3.43) describes Ohmic
friction. The cases 0 < s < 1 and s > 1 have been popularized as sub-Ohmic and
super-Ohmic, respectively [87]. We shall see in the next section that the case of Ohmic
friction is important, e. g., for charged interstitials in metals, while a phonon bath in
d spatial dimensions corresponds to the case s = d or s = d + 2 depending on the
symmetry properties of the strain field. Nonintegral values of s may be relevant for
fractal environments.

8.1.5 Rubin model

In Rubin’s model, a heavy particle of mass M and coordinate ¢ is bilinearly coupled
to a half-infinite chain of harmonic oscillators with masses m and spring constants
f = muw} /4 [88], as sketched in Fig. 3.1. The Hamiltonian of the global model is

H = i+v<q)+zj( - a?) v La-nr. @)

The model is not yet of the standard form (3.11) since the harmonic bath modes are
coupled with each other. The bath is diagonalized with the transformation

= \/2/7r] dk sin(kn) X (k) . (3.53)
0
In the normal mode representation of the reservoir, the Hamiltonian reads
2 P2(k
H = QI;W +V(q) + fq2 +/ dk( 2r(n) mwz(k)Xz(k) —c(k) X (k) q) , (3.54)

where the eigenfrequencies w(k) and the coupling function ¢(k) are given by

w(k) = wysin(k/2), c(k) = /2/n[mwd/4]sin(k) . (3.55)

The frequency wg is the highest frequency of the reservoir modes. Substituting
Eq. (3.55) into Eq.(3.29), the spectral density of the coupling is found as

_ mwj sin?(k) _ mw w?\1/2
J(w) = —igllfo dk31n(2k)6[w_w(k)] = —Eﬁw(l——w—ﬁ) O(wg —w),



