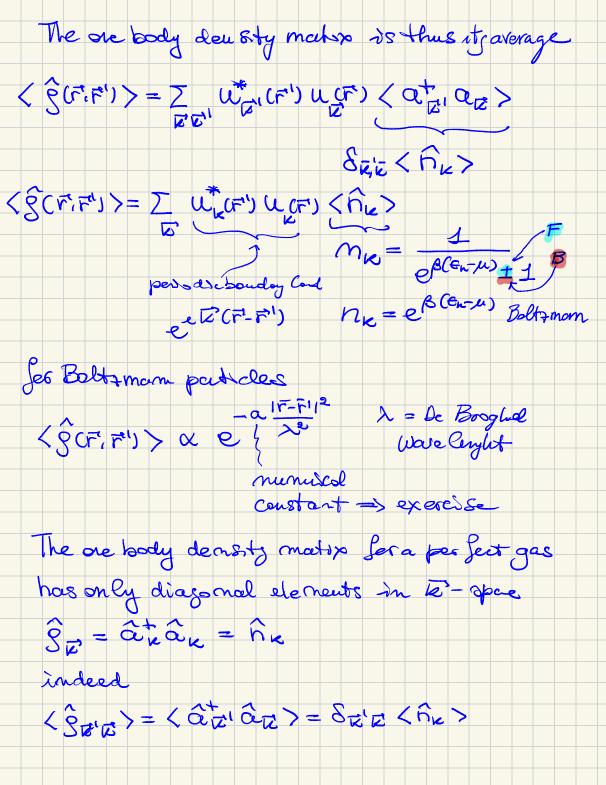
One body don sty makes for a single particle as have seen that 4(x) 4(x) represent the dusity at point x for a pure state the diagonal elevent of g= 14><41 In the coordinate representation 18 (x1) pre> = 14(28)12 The operator g= 4 (m) 4 (m) written on the single particle subspace reads S= 4(20) 10> <014(20) = 12> <21 its average son a on puls de stête glies (41 P14>=14 (ves)2 Now con sides non-dua gonal elements The deu sity mating for a pure shot = 14>(41 -> (21 p 14) = 4 (4) 4 (2) and consider the operator S= 4(y) 4(ne) 920 = 4 ty, 10> (01 4 (24) on a single puble state

itsaverage over a simple poulsele state gives <41 800 14> = <414> <=14> = 4 (y) +(2) There gere on Simple punhale state the deusity malso fera pure state have diagonal de neits (21912) = <414tos 40es 14> are averages of 4 ty Faes off disonal elevets (21) 1y > = <+1 (+ty) fow 1+> The one body deu 5. by makin coule defined un 20 as \$(x,y) = Fty) fa) Now consider 2 dostingue shabbe particles a pure stabe have the deu sites < x2x,14><412,22> = 14(x, x2)12 Now our sider the average of diagnal thanks of Sia = 4(x) 4(n) on such a store (41 4 (x) 4 (20) 14> 14>= Jdx, dx2 4(x, x2) 12,22>

$$\left\langle \hat{S}_{2}(x) \right\rangle = \int dx_{1} dx_{2} dx_{1} dx_{2} \left\langle x_{2}^{2} x_{1}^{1} \right| \hat{T}(x_{2}) \hat{T}(x_{2}) x_{2} \times \\ \times \hat{T}(x_{1}^{2} x_{1}^{2}) \hat{T}(x_{2}^{2} x_{2}^{2}) \hat{T}(x_{2}^{2} x_{2}^{2}) \hat{T}(x_{2}^{2} x_{2}^{2}) \hat{T}(x_{2}^{2} x_{2}^{2}) \hat{T}(x_{2}^{2} x_{2}^{2} x_{2}^{2}) \hat{T}(x_{2}^{2} x_{2}^{2} x_{2}^{2} x_{2}^{2} x_{2}^{2} x_{2}^{2}) \hat{T}(x_{2}^{2} x_{2}^{2} x_{2}$$

Thus the one body deusty operator represents in its diagonal element the reduced one body density This con be generalised to eff diasonal benu 3(x,y) = 4ty, 4cx) $\hat{S}(x,y) = \sum_{\alpha\beta} u_{\alpha}^* (y) u_{\beta}(x) a_{\alpha\beta}^*$ lets con sider its Hermal average on a free Hamiltonian e.g. that of ideal quantu gas The one par cle states are eigenstates of moneidum x = E at 10> = 12> Ŝ(F, F') = ∑ (* (F') (L (F') Qt, QE Off dig-nol d.m. operator



Normalization of one body density making The OBDM defined above have the Johnson, tamalifeta tr (Ŝkk > = Zk (ĥk > = (N) its trace equels to (N)_ Inthe closacol land 241 tr < Pun > = Ex = 2 -> Z Zx effex and z=esu the classical limit of OBDM is this (BKK) 8KK, = 5 6 per 8KK, Finishe classical Print (N)= Z Ix e fex There fore Z = (N) and Ix e fex (Sur) = (N) = EER 5 RE'

As defined above (Sku) = (N) e-BEK SKK Where $Z^{(1)} = \sum_{k} e^{\beta \epsilon_{k}} = \frac{L^{3}}{h^{3}} \int_{a}^{3} e^{\beta \frac{\pi}{2m}} = \frac{V}{\lambda^{3}}$ One con de fine fer Bobtzmam's particle $\hat{S}^{(1)} = \frac{-\beta \hat{v}(1)}{Z^{(1)}}$ and it is possible to show that $\langle \vec{r} | \hat{\varphi}^{(2)} | \vec{r} \rangle = \frac{1}{Z^{(2)}} e^{-\frac{1}{2}} \frac{1}{Z^2} = \frac{\text{dineu Slonless}}{\text{constant}}$ Notice that the normals section is inthe 1 trestan = 1 but one has to con sodes finite volue since $\langle F| \in \beta H^{(1)} | F \rangle = \frac{1}{\sqrt{2}} \frac{1}{2^{(1)}}$

