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Indistinguishable particles
• Indistinguishability implies invariance under permutations of particles. The observables must

be invariant under permutations and the states must be totally symmetric (Bose statistics) or
totally antisymmetric (Fermi statistics).

• Any possible permutation is implemented by an operator Pm. Given N indices, the permutations
operators are N ! (including the identity) and they form a possible representation of a discrete
group PN , with Pm ∈ PN . There are N − 1 generators σj consisting of the exchange of two
“neighbor” elements

σj ∈ PN : j ↔ j + 1 j = 1, . . . N − 1,

which satisfy the involutory property
σ2
j = I.

Any Pm can be obtained as a product of some generators

Pm =
∏
{jm}

σjm ,

where we denote with {jm} a possible sequence of nm values of j meaning the number of trans-
positions needed to obtain the permutation.

• ConsiderN particles and a complete set of p single-particle states {|α⟩}. Suppose that nj particles
are in the state |αj⟩ (with

∑p
j=1 nj = N), to construct the correctly symmetrized |{α}SN⟩ state

one can start from a possible configuration |{α}N⟩ = |α1⟩⊗n1 |α2⟩⊗n2 . . . |αp⟩⊗np and apply to it
the (anti)symmetrization operator

|{α}SN⟩ =
1√

N !
∏p

j=1 nj!

N !∑
m=1

ζnmPm |{α}N⟩ =
√

N !∏p
j=1 nj!

Sζ |{α}N⟩ , (1)

where Pm is a possible permutation. The symbol

ζ =

{
1 bosons
−1 fermions

refers to the bosonic/fermionic statistics, and

Sζ =
1

N !

N !∑
m=1

ζnmPm, (2)

is the (anti)symmetrization operator1.
1Notice that from the property

PsPm = Pk ⇒ P2
sPm = Pm = PsPk,

follows that
ζnsPsSζ =

1

N !

∑
m

ζnm+nsPsPm =
1

N !

∑
k

ζnkPk = Sζ ,

and
S2
ζ = Sζ .

Moreover, S†
ζ = Sζ since Pm are hermitian. This means that Sζ is a projector. In particular, S+ and S− are orthogonal

projectors
S+S− = 0.
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• If the vectors {|α⟩} form a discrete complete orthonormal basis for the single-particle space, then
the resolution of identity for the N -particle space is∑

α1,...,αN

|{α}SN⟩ ⟨{α}
S
N | = IN , (3)

and, if the basis is continuous ∫
dα1 . . . dαN |{α}SN⟩ ⟨{α}

S
N | = IN . (4)

Exercise 1. Consider 3 particles each of them described by a 4-dimension single-particle state in a
space spanned by the complete basis

|a⟩ , |b⟩ , |c⟩ , |d⟩ .

1. How many 3-particle states would the basis be composed of if the particles were distinguishable?

2. How many 3-particle states would the basis be composed of if the particles were classically
indistinguishable? Construct them.

3. How many 3-particle states would the basis be composed of if the particles were indistinguishable
bosons? Construct them.

4. How many 3-particle states would the basis be composed of if the particles were indistinguishable
fermions? Construct them.

Second quantization
The second quantization is formalism which is more suitable to describe a many-body system because:

• It is more compact than “first quantization”,

• It avoids to write explicitly the (anti-)symmetrization of the state, because in second quantization
the correct symmetry is already contained in the algebra of the operators,

• It is easier to work with an arbitrary (not necessary fixed) number of particles,

• Gives a more intuitive picture of the interaction in terms of processes of creation and annihilation
of particles.

• It is the formal tool to define a quantum field.

One-particle states

Consider a complete basis of single-particle states {|ϕk⟩} ∈ H1 with k a discrete dimensionless index.
We can introduce for each of them a creation operator as

a†
k |0⟩ = |ϕk⟩ , (5)

where |0⟩ is called vacuum state: it does not belong to H1 and it is the only normalized state of a
one-dimensional Hilbert space H0. The interpretation is that, starting from the vacuum, a particle is
created in that specific state. Then, for each creation operator there is its adjoint ak which is called
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annihilation operator. In the following we will denote with ak, a†
k the generic operators, with ck,

c†k the fermionic operators and with bk, b†
k the bosonic operators.

The particle statistics is taken into account imposing suitable (anti-)commutation rules. The
properties of the bosonic operators are given by the commutation rules

[bk,bk′ ] = 0, (6)[
bk,b

†
k′

]
= δk,k′ ,

while the properties of the fermionic operators are given by the anti-commutation rules

{ck, ck′} = 0,{
ck, c

†
k′

}
= δk,k′ . (7)

We can use the compact notation
[, ] = [, ]− , {, } = [, ]+

and write
[ak, ak′ ]−ζ = 0;

[
ak, a

†
k′

]
−ζ

= δk,k′ . (8)

Occupation-number operator

The occupation-number operator for the state k is

nk = a†
kak,

which satisfies the following commutation relations (both for fermions and bosons)

[ak,nk′ ] = akδk,k′ ,
[
a†
k,nk′

]
= −a†

kδk,k′ . (9)

Exercise 2. Remembering that, given three operators A, B, C, the following relations hold

[AB,C] = A [B,C] + [A,C]B = A {B,C} − {A,C}B = A [B,C]−ζ + ζ [A,C]−ζ B (10)

[AB,C]−ζ = A [B,C]−ζ + ζ [A,C]B (11)

prove Eq. (9).
For a single particle the occupation-number operator gives the probability distribution for the

particle to be in the state k
pk = ⟨nk⟩ =⇒

∑
k

⟨nk⟩ = 1,

as a consequence, the identity in H1 is
I =

∑
k

nk.

Change of basis

Given two different single-particle basis {|ϕk⟩} e {|νk⟩}, corresponding to the operators a†
k d†

k, one can
express one basis in terms of the other as

|ϕk⟩ =
∑
l

⟨νl|ϕk⟩ |νl⟩ , (12)

so, from (16), the same change of basis can done in term of operators

a†
k =

∑
l

⟨νl|ϕk⟩d†
l . (13)
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Field operators

The field creation operators are defined analogously from a continuous basis |x⟩ (where x is a
generic continuous variable) as

Ψ†(x) |0⟩ = |x⟩ . (14)

Since
|x⟩ =

∑
k

⟨ϕk|x⟩ |ϕk⟩ =
∑
k

ϕ∗
k(x)a

†
k |0⟩ , (15)

the field operator can be expressed as the linear combination

Ψ†(x) =
∑
k

ϕ∗
k(x)a

†
k, (16)

and vice versa
â†
k =

∫
dx ϕk(x)Ψ̂

†(x). (17)

The (anti-)commutation relations for the field operators are

[Ψ(x),Ψ(x′)]−ζ = 0;
[
Ψ(x),Ψ†(x′)

]
−ζ

= δ(x− x′) . (18)

Local-density operator

Form the field operators one can define the local-density operator

n (x) = Ψ†(x)Ψ(x),

which satisfy the commutation rules

[Ψ(x),n(x′))] = Ψ(x)δ(x− x′),
[
Ψ†(x),n(x′))

]
= −Ψ†(x)δ(x− x′) . (19)

Exercise 3. Prove formula (19).

Exercise 4. It is possible to define also field operators in the momentum representation

Ψ̃ (k) , Ψ̃† (k) ,

write these operators in term of field operators Ψ†(x), Ψ(x).
As in the discrete case, in H1 n (x) represents the probability density function in the continuous

variable x
p (x) = ⟨n (x)⟩ =⇒

∫
dx ⟨n (x)⟩ = 1.

As in the discrete case, in H1 the identity can be expressed as

I =

∫
dxn (x) .

Many-particle states

To describe a many-particle state, one can introduce the so-called Fock space F which is a Hilbert
space given by the direct sum of fixed-particle states

F = F0 ⊕F1 ⊕F2 ⊕F3 ⊕ . . .
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Starting from F0 = H0 and F1 = H1 (zero and one-particle Hilbert spaces), and from a complete set
of single-particle states a†

k |0⟩, the so-called occupation-number representation for the elements
of F is defined giving how many particles are on each single-particle state

|n1, n2, . . .⟩ ,

with the total number of particle given by
∑

j nj = N . Of course

nk = 0, 1

for fermions and
nk = 0, 1, 2, . . . ,∞

for fermions. Applying a creation/annihilation operator to a N -particle state, one jumps to a N ± 1
particle sector of the Fock space

a†
k |n1, n2, . . . , nk, . . .⟩ =

{√
nk + 1 |n1, n2, . . . , (nk + 1)k , . . .⟩ bosons

(−1)k+1 δnk,0 |n1, n2, . . . , (nk + 1)k , . . .⟩ fermions
,

ak |n1, n2, . . . , nk, . . .⟩ =

{√
nk |n1, n2, . . . , (nk − 1)k , . . .⟩ bosons

(−1)k+1 δnk,1 |n1, n2, . . . , (nk − 1)k , . . .⟩ fermions
.

In this representation a vector basis for N identical particles can be written as the (normalized) vectors

|n1, n2, . . .⟩ =
1√∏
k nk!

∏
k

(
a†
k

)nk

|0⟩ , (20)

(remembering that because of the anti-commutation rules, for the fermions one has a†nk

k = 0 for nk > 1)
with ∑

k

nk = N.

For any subspace FN a resolution of identity is

IN =
∑

{nk}|
∑

k nk=N

1∏
k nk!

[∏
k

(
a†
k

)nk

|0⟩ ⟨0|
∏
k

ank
k

]
=

1

N !

∑
k!,k2,...kN

[∏
j

a†
kj
|0⟩ ⟨0|

∏
j

akj

]
,

and in particular
I0 = |0⟩ ⟨0| ,

I1 =
∑
k

a†
k |0⟩ ⟨0| ak,

I2 =
1

2

∑
k,k′

a†
ka

†
k′ |0⟩ ⟨0| ak′ak,

and so on.
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Continuous basis

Starting from a continuous basis, one can proceed in a similar way, paying attention to the normaliza-
tion. Applying a field operator to a 1-particle state, one obtains a 2-particle state

Ψ†(x2) |x1⟩ = Ψ†(x2)Ψ
†(x1) |0⟩ .

The possible states constructed in this way are orthogonal

⟨0|Ψ(x3)Ψ(x4)Ψ
†(x2)Ψ

†(x1)|0⟩ = ⟨0|Ψ(x3)
(
δ (x2 − x4) + ζΨ†(x2)Ψ(x4)

)
Ψ†(x1)|0⟩ =

= δ (x2 − x4) δ (x1 − x3) + ζ ⟨0|Ψ(x3)Ψ
†(x2)Ψ(x4)Ψ

†(x1)|0⟩ =
= δ (x2 − x4) δ (x1 − x3) + ζδ (x2 − x3) δ (x1 − x4) ,

moreover (∫
dx3dx4Ψ

†(x4)Ψ
†(x3) |0⟩ ⟨0|Ψ(x3)Ψ(x4)

)
Ψ†(x2)Ψ

†(x1) |0⟩ =

=

∫
dx3dx4 (δ (x2 − x4) δ (x1 − x3) + ζδ (x2 − x3) δ (x1 − x4))Ψ

†(x4)Ψ
†(x3) |0⟩ =

=
(
Ψ†(x2)Ψ

†(x1) + ζΨ†(x1)Ψ
†(x2)

)
|0⟩ = 2Ψ†(x2)Ψ

†(x1) |0⟩ ,

it follows that in the 2-particle space, the resolution of the identity is

1

2

∫
dx3dx4Ψ

†(x4)Ψ
†(x3) |0⟩ ⟨0|Ψ(x3)Ψ(x4) = I.

This result can be generalized to N particles

1

N !

∫
dx1 . . . dxN Ψ†(xN) . . .Ψ

†(x1) |0⟩ ⟨0|Ψ(x1) . . .Ψ(xN) = I,

giving the correct normalization for the continuous basis for fixed number of particles

|x1, x2, . . . , xN⟩ =
1√
N !

N∏
k=1

Ψ† (xk) |0⟩ .

Important! Notice that in the Fock representation the state has automatically the correct sym-
metrization of (1) so to say

|n1, n2, . . .⟩ = |{k}SN⟩ ,

as can be verified in the following example.

Example 0.0.1. Two-particle case: consider two particles in the Fock state with k ̸= k′

|ψ⟩ = a†
ka

†
k′ |0⟩ , (21)

its wave function is given by

ψ(x1, x2) =
1√
2
⟨0|Ψ(x1)Ψ(x2)a

†
ka

†
k′ |0⟩ =

=
1√
2

∑
l,m

ϕl(x1)ϕm(x2) ⟨0| alama
†
ka

†
k′ |0⟩ =

=
1√
2
(ϕk(x1)ϕk′(x2) + ζϕk(x2)ϕk′(x1)) , (22)
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and it has the correct symmetrization. If the particles are two bosons in the same quantum number

|ψ⟩ = 1√
2
a†2
k |0⟩ ,

the wave function is

ψ(x1, x2) =
1

2
⟨0|Ψ(x1)Ψ(x2)a

†2
k |0⟩ =

=
1

2

∑
l,m

ϕl(x1)ϕm(x2) ⟨0| alama
†2
k |0⟩ =

= ϕk(x1)ϕk(x2). (23)

Particle-number operator

For a N -particle system, the average of the local-density operator over the N−particle state gives the
density of particles for each position x, while the average of the occupation-number operator is the
average occupation of the state k.

The particle-number operator is

N =

∫
dxΨ†(x)Ψ(x) =

∑
k

a†
kak.

Example 0.0.2. Consider the two-particle state

|ϕN=2⟩ =
1√
2

∫
dx1dx2 f (x1, x2)Ψ

†(x2)Ψ
†(x1) |0⟩ .

Let us analyze the coefficient f (x1, x2) .

• They must be (anti-)symmetric f (x1, x2) = ζf (x2, x1):

|ϕN=2⟩ =
1√
2

∫
dx1dx2 f (x1, x2)Ψ

†(x2)Ψ
†(x1) |0⟩ =

=
ζ√
2

∫
dx1dx2 f (x1, x2)Ψ

†(x1)Ψ
†(x2) |0⟩ =

=
ζ√
2

∫
dx1dx2 f (x2, x1)Ψ

†(x2)Ψ
†(x1) |0⟩ ,

• From the normalization condition derives that
∫
dx1dx2 |f (x1, x2)|2 = 1 :

⟨ϕN=2|ϕN=2⟩ =
1

2

∫
dx1dx2dx3dx4 f

∗ (x3, x4) f (x1, x2)×

×⟨0|Ψ(x3)Ψ(x4)Ψ
†(x2)Ψ

†(x1)|0⟩ =

=
1

2

∫
dx1dx2dx3dx4 f

∗ (x3, x4) f (x1, x2)×

× [δ (x2 − x4) δ (x1 − x3) + ζδ (x2 − x3) δ (x1 − x4)] =

=
1

2

∫
dx1dx2

[
|f (x1, x2)|2 + ζf ∗ (x2, x1) f (x1, x2)

]
=

=

∫
dx1dx2 |f (x1, x2)|2 .
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• The quantity |f (x1, x2)|2 represents the probability density function p (x1, x2) for two particles
to be localized in the positions x1 and x2. The marginal distribution for a single particle is

p (x) =

∫
dx2 |f (x, x2)|2 .

• The average of the (single particle) local-density operator over the state |ϕN=2⟩ is

⟨n (x)⟩ = 2p (x) ,

as can be found explicitly

⟨ϕN=2|n (x) |ϕN=2⟩ =

∫
dx1dx2dx3dx4

f (x1, x2) f
∗ (x3, x4)

2
⟨0|Ψ(x3)Ψ(x4)n(x)Ψ

†(x2)Ψ
†(x1)|0⟩ =

=
1

2

∫
dx1dx2dx3dx4 f (x1, x2) f

∗ (x3, x4)×

×⟨0|Ψ(x3)Ψ(x4)
[
Ψ†(x2)δ (x2 − x) +Ψ†(x2)n(x)

]
Ψ†(x1)|0⟩ =

=
1

2

∫
dx1dx2dx3dx4 f (x1, x2) f

∗ (x3, x4)×

×
[
δ (x2 − x) ⟨0|Ψ(x3)Ψ(x4)Ψ

†(x2)Ψ
†(x1)|0⟩ +

+ ⟨0|Ψ(x3)Ψ(x4)
[
Ψ†(x2)Ψ

†(x1)δ (x1 − x) +Ψ†(x2)Ψ
†(x1)n(x)

]
|0⟩
]
=

=
1

2

∫
dx1dx2dx3dx4 f (x1, x2) f

∗ (x3, x4)× (δ (x2 − x) + δ (x1 − x))

× (δ (x2 − x4) δ (x1 − x3) + ζδ (x2 − x3) δ (x1 − x4)) =

=

∫
dx2 |f (x, x2)|2 +

∫
dx1 |f (x1, x)|2 = 2

∫
dx2 |f (x, x2)|2 .

Exercise 5. Verify the following relations:

[ak,N] = ak,
[
a†
k,N

]
= −a†

k (24)

[Ψ (x) ,N] = Ψ (x) ,
[
Ψ† (x) ,N

]
= −Ψ† (x) (25)

Exercise 6. Show that
e−aNΨ (x) eaN = Ψ (x) ea

Observables

A many-body observable A must be invariant under any particle permutation so it must satisfy

[A,Pm] = 0.

We want to express the operators in terms of creation and annihilation operators. Before to start, we
notice that, for one particle(

a†
n |0⟩ ⟨0| al

)
|ψ⟩ = a†

n |0⟩ ⟨0| al

∑
k

ψka
†
k |0⟩ = ψla

†
n |0⟩ ,

(
a†
nal

)
|ψ⟩ = a†

nal

∑
k

ψka
†
k |0⟩ = ψla

†
n |0⟩ ,

so one obtains the formal relation
a†
n |0⟩ ⟨0| al = a†

nal,

that will result useful in the following.
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One-particle operators

Let A1 be an operator acting on the Hilbert space of a single particle. The one-particle many-body
operator corresponding to it is

A = A1 ⊗ IN−1 + I1 ⊗A1 ⊗ IN−2 + . . .+ IN−1 ⊗A1.

This means that, even if the operator acts on the N -particle space, it engages a single particle at a
time. In first quantization a one-particle observable A1 has the following representation in terms of
its eigenstates A1 |ϕk⟩ = Fk |ϕk⟩

A1 =
∑
k

Fk |ϕk⟩ ⟨ϕk| . (26)

In second quantization one has an equivalent representation, given |ϕk⟩ = a†
k |0⟩, the operator can be

represented as
A1 =

∑
k

Fknk. (27)

As expected, for the single particle case the two pictures are completely equivalent as expected. Taking
another basis

{
|νk⟩ = d†

k |0⟩
}

, the observable can be written as

A1 =
∑
k

Fk |ϕk⟩ ⟨ϕk| =
∑
k,l,m

Fk |νl⟩ ⟨νl|ϕk⟩ ⟨ϕk|νm⟩ ⟨νm| =
∑
l,m

Al,m |νl⟩ ⟨νm| (28)

with Al,m =
∑

k Fk ⟨νl|ϕk⟩ ⟨ϕk|νm⟩ = ⟨0|dlA1d
†
m|0⟩, using (13) in (27), one gets

A1 =
∑
l,m

Al,md
†
ldm.

The second-quantization representation results more convenient for more than one particle, since this
representation of the operators remains the same also in the N-particle space, so one gets

A =
∑
l,m

Al,md
†
ldm with Al,m = ⟨0|dlA1d

†
m|0⟩ , (29)

and, in a continuous basis

A =

∫
dx1dx2A (x1, x2)Ψ

† (x1)Ψ (x2) with A (x1, x2) = ⟨0|Ψ (x1)A1Ψ
† (x2) |0⟩ . (30)

The rigorous proof of this fact is a little long and tedious, so we rather prefer to show it, in the next
example, only in the simple case of two particles and let the interested reader to generalize it.

Example 0.0.3. Let us study the case of N = 2. The action of a single-particle operator

A = A1 ⊗ I1 + I1 ⊗A1,



10

on the symmetrized two-particle state in first quantization is
√
2ASζ |x2⟩ |x1⟩ =

√
2SζA |x2⟩ |x1⟩ =

=
√
2Sζ [(A1 |x2⟩) |x1⟩+ |x2⟩ (A1 |x1⟩)] =

=
1√
2
[(A1 |x2⟩) |x1⟩+ ζ |x1⟩ (A1 |x2⟩)] +

+
1√
2
[(|x2⟩ (A1 |x1⟩) + ζ (A1 |x1⟩) |x2⟩)] =

=

∫
dx3A (x3, x2)

|x3⟩ |x1⟩+ ζ |x1⟩ |x3⟩√
2

+

+

∫
dx3A (x3, x1)

|x2⟩ |x3⟩+ ζ |x3⟩ |x2⟩√
2

=

=
1√
2

∫
dx3A (x3, x2)Ψ

† (x3)Ψ
† (x1) |0⟩+

+
1√
2

∫
dx3A (x3, x1)Ψ

† (x2)Ψ
† (x3) |0⟩ =

=
1√
2
Ψ† (x2)

∫
dx3A (x3, x1)Ψ

† (x3) |0⟩+

+
1√
2
ζΨ† (x1)

1√
2

∫
dx3A (x3, x2)Ψ

† (x3) |0⟩ .

Using the single-particle property (30) we get

A |xj⟩ = AΨ† (xj) |0⟩ =
∫
dx3dx4A (x3, x4)Ψ

† (x3)Ψ (x4)Ψ
† (xj) |0⟩ =

=

∫
dx3dx4A (x3, x4)Ψ

† (x3)
[
δ (x4 − xj) + ζΨ† (xj)Ψ (x4)

]
|0⟩ =

=

∫
dx3A (x3, xj)Ψ

† (x3) |0⟩ ,

so the previous equation becomes
√
2ASζ |x2⟩ |x1⟩ =

1√
2
AΨ† (x2)Ψ

† (x1) |0⟩ =

=
1√
2

(
Ψ† (x2)A1Ψ

† (x1) + ζΨ† (x1)A1Ψ
† (x2)

)
|0⟩

obtaining the following identity

AΨ†(x2)Ψ
†(x1) |0⟩ =

(
Ψ†(x2)A1Ψ

†(x1) + ζΨ†(x1)A1Ψ
†(x2)

)
|0⟩ .

We now introduce two resolutions of the identity

A = IAI =
1

4

∫
dx1dx2dx3dx4Ψ

†(x2)Ψ
†(x1) |0⟩ ⟨0|Ψ(x1)Ψ(x2)AΨ†(x4)Ψ

†(x3) |0⟩ ⟨0|Ψ(x3)Ψ(x4),

(31)
let us analyze the central term

⟨0|Ψ(x1)Ψ(x2)AΨ†(x4)Ψ
†(x3)|0⟩ = ⟨0|Ψ(x1)Ψ(x2)

(
Ψ†(x4)A1Ψ

†(x3) + ζΨ†(x3)A1Ψ
†(x4)

)
|0⟩ ,

it splits in two parts

⟨0|Ψ(x1)Ψ(x2)Ψ
†(x4)A1Ψ

†(x3)|0⟩ = δ (x2 − x4) ⟨0|Ψ(x1)A1Ψ
†(x3)|0⟩+

+ζ ⟨0|Ψ(x1)Ψ
†(x4)Ψ(x2)A1Ψ

†(x3)|0⟩ =
= δ (x2 − x4) ⟨0|Ψ(x1)A1Ψ

†(x3)|0⟩+
+δ (x1 − x4) ζ ⟨0|Ψ(x2)A1Ψ

†(x3)|0⟩
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and, equivalently,

ζ ⟨0|Ψ(x1)Ψ(x2)Ψ
†(x3)A1Ψ

†(x4)|0⟩ = ζδ (x2 − x3) ⟨0|Ψ(x1)A1Ψ
†(x4)|0⟩+

+δ (x1 − x3) ⟨0|Ψ(x2)A1Ψ
†(x4)|0⟩ .

The two resulting integrals are equivalent, in fact for the second term one can make a change of
variables x3 ⇄ x4 remembering that Ψ(x3)Ψ(x4) = ζΨ(x4)Ψ(x3), so eq. (31) becomes

A =
1

2

∫
dx1dx2dx3Ψ

†(x2)Ψ
†(x1) |0⟩ ⟨0|Ψ(x1)A1Ψ

†(x3)|0⟩ ⟨0|Ψ(x3)Ψ(x2) +

+
ζ

2

∫
dx1dx2dx3Ψ

†(x2)Ψ
†(x1) |0⟩ ⟨0|Ψ(x1)A1Ψ

†(x3)|0⟩ ⟨0|Ψ(x3)Ψ(x1),

also in this case the two terms are equivalent since one can change x1 ⇄ x2, so the result is

A =

∫
dx1dx3 ⟨0|Ψ(x1)A1Ψ

†(x3)|0⟩Ψ†(x1)

[∫
dx2Ψ

†(x2) |0⟩ ⟨0|Ψ(x2)

]
Ψ(x3),

the part inside the parenthesis is a resolution of the identity in the one-particle state, so we obtain the
desired result

A =

∫
dx1dx3 ⟨0|Ψ(x1)A1Ψ

†(x3)|0⟩Ψ†(x1)Ψ(x3).

Example 0.0.4. Single particle Hamiltonian: Take a single-particle Hamiltonian

H =
p2

2m
+V(x) (32)

in the basis {|ϕk⟩} one has

H =
∑
i,j

Hi,j |ϕi⟩ ⟨ϕj| =
∑
i,j

Hi,ja
†
iaj . (33)

In the position representation

H =

∫
dx1dx2 Ψ̂

† (x1) Ψ̂ (x2) ⟨x1|H|x2⟩ ,

since V (x) is local
⟨x1|V (x) |x2⟩ = V (x1) δ (x1 − x2) ,

and
⟨x1|p|x2⟩ = −iδ (x1 − x2)

∂

∂x2
,

one gets

H =

∫
dx Ψ̂†(x)H

(
x,

∂2

∂x2

)
Ψ̂(x) . (34)

Exercise 7. Write the spin-1
2

operator S⃗ in terms creation and annihilation operators of fermions
with spin 1

2
and −1

2

cσ, c
†
σ σ = ±1.

Try to express this result in a compact quadratic form of this kind

S⃗ = v†M⃗v,

where

v =

(
c 1

2

c− 1
2

)
,

and M⃗ is a vector whose three components are 2× 2 matrices.
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Example 0.0.5. Current density operator: In quantum mechanics, the current density of a single
particle wavefunction ψ (x)

J(x) =
1

m
ℑ
[
ψ∗∂ψ

∂x

]
,

is the average value of the so-called current-density operator, defined as

J (x) =
1

2m
{p, δ (x− x)} ,

on the state |ψ⟩

J(x) = ⟨ψ|J (x) |ψ⟩ =

=
1

2m
(⟨ψ|pδ (x− x) |ψ⟩+ ⟨ψ|δ (x− x)p|ψ⟩) =

=
1

2m

∫
dx′ (⟨ψ|p|x′⟩ ⟨x′|δ (x− x) |ψ⟩+ ⟨ψ|δ (x− x) |x′⟩ ⟨x′|p|ψ⟩) =

=
1

2m

∫
dx′ δ (x− x′) (⟨ψ|p|x′⟩ ⟨x′|ψ⟩+ ⟨ψ|x′⟩ ⟨x′|p|ψ⟩) =

=
i

2m

(
∂ψ∗ (x)

∂x
ψ (x)− ψ∗ (x)

∂ψ (x)

∂x

)
=

1

m
ℑ
[
ψ∗∂ψ

∂x

]
.

The current density operator can be expressed in second quantization as

J (x) =
1

2m

∫
dx′dx′′ Ψ̂† (x′) Ψ̂ (x′′) ⟨x′| {p, δ (x− x)} |x′′⟩ =

=
−i
2m

∫
dx′dx′′ Ψ̂† (x′) Ψ̂ (x′′) (δ (x− x′′) + δ (x− x′)) δ′ (x′ − x′′) =

=
i

2m

(∫
dx′′

∂Ψ̂† (x′′)

∂x′′
Ψ̂ (x′′) δ (x− x′′)−

∫
dx′ Ψ̂† (x′)

∂Ψ̂ (x′)

∂x′
δ (x− x′)

)
,

J (x) =
i

2m

(
∂Ψ̂† (x)

∂x
Ψ̂ (x)− Ψ̂† (x)

∂Ψ̂ (x)

∂x

)
.

One can expand the operator in a discrete basis

Ψ†(x) =
∑
k

ϕ∗
k(x)a

†
k,

J (x) =
i

2m

∑
k,m

(
∂ϕ∗

k(x)

∂x
ϕm(x)a

†
kam − h.c.

)
.

The global current is obtained integrating over all the space

J = i
∑
k,m

(
gk,ma

†
kam − h.c.

)
,

gk,m =
1

2m

∫
dx

∂ϕ∗
k(x)

∂x
ϕm(x).
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Two-particle operators

Let A2 be an operator acting on the Hilbert space of two particles. The two-particle many-body
operator corresponding to it is

A = A2 ⊗ IN−2 + I1 ⊗A2 ⊗ IN−3 + . . .+ IN−2 ⊗A2 =
1

2

∑
i,j

A
(i,j)
2 ⊗ IN−2.

Given a single-particle basis
d†
n |0⟩ = |ϕn⟩ ,

the two-particle operators have the form

A =
1

2

∑
j,n,j′,n′

⟨ϕj, ϕn|A2|ϕn′ , ϕj′⟩d†
jd

†
ndj′dn′ . (35)

Notice that the state |ϕn′ , ϕj′⟩ is not symmetrized.

Example 0.0.6. Let us check it in the case in which we have only two particles. The matrix element
of A is

⟨0|dm′dk′Ad†
kd

†
m|0⟩ = ⟨ϕk′ϕm′ |A2|ϕkϕm⟩+ ζ ⟨ϕk′ϕm′ |A2|ϕmϕk⟩ ,

where we used the symmetry of the operator

⟨ϕk′ϕm′|A2|ϕkϕm⟩ = ⟨ϕm′ϕk′|A2|ϕmϕk⟩ .

Let us compare it with (35)

⟨0|dm′dk′Ad†
kd

†
m|0⟩ =

1

2

∑
j,n,j′,n′

⟨ϕj, ϕn|A2|ϕn′ , ϕj′⟩ ⟨0|dm′dk′d
†
jd

†
ndj′dn′d†

kd
†
m|0⟩ ,

the right-side term can be expanded

⟨0|dm′dk′d
†
jd

†
ndj′dn′d†

kd
†
m|0⟩ = ⟨0|dm′

(
δk′,j + ζd†

jdk′

)
d†
ndj′

(
δn′k + ζd†

kdn′

)
d†
m|0⟩ =

= δk′,jδn′kδm′,nδj′m + ζδk′,jδm′,n ⟨0|
(
δj′,k + ζd†

kdj′

) (
δn′k + ζd†

mdn′
)
|0⟩+

+ζδn′kδj′m ⟨0|
(
δm′,j + ζd†

jdm′

) (
δk′,n + ζd†

ndk′
)
|0⟩+

+ ⟨0|dm′d†
jdk′d

†
ndj′d

†
kdn′d†

m|0⟩ =
= δk′,jδn′kδm′,nδj′m + ζδk′,jδm′,nδj′,kδn′k +

+ζδn′kδj′mδm′,jδk′,n + δm′jδk′,nδj′,kδn′m,

so to obtain

⟨0|dm′dk′Ad†
kd

†
m|0⟩ =

1

2
(2 ⟨ϕk′ , ϕm′ |A2|ϕk, ϕm⟩+ 2ζ ⟨ϕk′ , ϕm′|A2|ϕm, ϕk⟩) .

In a continuous basis

A =
1

2

∫
dx1dx2dx3dx4 ⟨x1,x2|A2|x3,x4⟩ Ψ̂†(x1)Ψ̂

†(x2)Ψ̂(x4)Ψ̂(x3) .
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Global gauge transformations

We know that, in quantum mechanics, one-particle states are defined up to a global phase factor

|ψ⟩ → eiϕ |ψ⟩ .

Equivalently, the observables are unchanged under the transformation

e−iϕAeiϕ = A.

This phase factor represents for the quantum system a globlal U (1) symmetry, under which it is invari-
ant. In second quantization and within a one-particle space, this gauge transformation is equivalent
to

aj → aje
iϕ.

In the Fock space, a global gauge transformation is obtained applying the symmetry generated by the
operator N

U = eiϕN, (36)

indeed
U†ajU = eiϕaj.

The system is invariant under this global gauge transformation if and only if the Hamiltonian commute
whit its infinitesimal generator, i.e. N, meaning that the total number of particles is a conserved
quantity. All the n−body Hamiltonians that we described are obviously invariant under (36), indeed
their structure consists of terms with products of n creation and n annihiliation operators which
transform as

U†a†
1 . . . a

†
nan . . . a1U = e−niϕa†

1 . . . a
†
nan . . . a1e

niϕ = a†
1 . . . a

†
nan . . . a1.

The requirement of being particle-preserving is a quite reasonable physical requirement but also non
particle-preserving Hamiltonians can be constructed introducing for example terms proportional to

a†
ia

†
j + ajai.

Such terms are commonly allowed when assuming the existence of a reservoir with which the system can
exchange particles. A typical example is the BCS mean field Hamiltonian describing a superconductor
in the mean field approximation, where these terms appeas as the effect of the spontaneous symmetry
breaking of the U (1) symmetry.
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