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Fig. 7.23. Plots of the exact density of states and the density of states obtained using the
continuum approximation, both for the one-dimensional lattice. Here we take

wC =WL=wD.

where in the second term we have again made the change of variables, x = Shw,
and have defined the Debye temperature, Tp = Awp /kp.

In the limit 7 — 0, the heat capacity in the continuum approximation
becomes

+ 0(T?). (7.207)

NkgT (® dxx2e NkgT 2
Cy = ”J _+or?) =
TD o(e"—l) 3TD

At very low temperatures the continuum approximation also gives a heat
capacity for the one-dimensional lattice which goes to zero linearly with the
temperature. The coefficient differs slightly from the exact result in Eq. (7.201).

[> $7.B. Momentum Condensation in an Interacting Fermi Fluid
15-17]

An ideal Bose-Einstein gas can condense in momentum space and thereby
undergo a phase transition, but an ideal Fermi-Dirac gas is prevented from
doing so because the Pauli exclusion principle does not allow more than one
fermion to occupy a given quantum state. Electrons in a conducting solid are
free to wander through the lattice and form a Fermi fluid. At low temperatures
the electrons form a Fermi sea and only those near the Fermi surface affect the
thermodynamic properties of the electron fluid (cf. Section 7.H). The electrons
experience a mutual Coulomb repulsion which is screened by lattice ions.
However, as first noted by Frohlich [18], those electrons in the neighborhood of
the Fermi surface also experience a lattice-phonon-mediated effective attraction
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(two electrons may in effect be attracted to one another because they are both
attracted to the same lattice ion). Cooper [15] showed that this effective
attraction at the Fermi surface could cause bound pairs of electrons to form, and
these pairs could then condense in momentum space, giving rise to a phase
transition in the interacting Fermi fluid. Bardeen, Schrieffer and Cooper, [16]
showed that this momentum space condensation of Cooper pairs is the origin of
superconductivity in materials. In 1972, they received the Nobel Prize for this
work.

We shall now derive the thermodynamic properties of a Fermi fluid which
can form Cooper pairs. It is found experimentally that Cooper pairs have zero
total angular momentum and zero total spin. If the pairs are not undergoing a
net translation through the fluid (no supercurrent), then we can assume that only
those electrons at the Fermi surface with equal and opposite momentum and
opposite spin components are attracted to one another. We shall assume that all
other electrons behave like an ideal gas. With these assumptions, we can write
the Hamiltonian of the electron fluid in the form

H=Y adalaxa+) Y Vial,al, aay, (7.208)
k,\ k 1

where e = h%k?/2m, and )\ denotes the z component of spin of a given electron
and takes values A =1 or A =] (spin component + 3% or — 1/, respectively).
The operators, 4, , and ax », respectively create and annihilate an electron with
momentum /K and spin component A (cf. Appendix B). They satisfy fermion
anticommutation relations. The interaction term in Eq. (7.208) destroys a pair
of electrons with momenta Al and —#l and opposite spin components, and it
creates a pair of electrons with momenta Ak and —Akk and opposite spin
components. Since the electrons only experience an attraction at the Fermi
surface, the interaction energy, Vi), can be written

-V if |4/ —ex] <Ae and |y’ — g| < Ae,
k,1={ 0 W = el W = el (7.209)

0 otherwise,

where V) is a positive constant, 4’ is the chemical potential of the fermi fluid,
and Ac is a small energy of order kgT.

In order to simplify our calculations, we shall compute the thermodynamic
properties of this interacting Fermi fluid in the mean field approximation. We
write the Hamiltonian in the form

fiMf = Z Ek&}:,,\&l;:,,\ + Z Aga_x,ax; + Z Ak&LT&f_k’l, (7.210)
Kk, k k

where

A if |u — ex| < A€,

Ay = {0 otherwise (7'21 1)
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and

! /

A=-Vo) (ayaxy)and A*=-Vo) (af.al, ). (7.212)
k k

The prime on the summation, Y _;, means that the summation is restricted to a
distance, Ae, on either side of the Fermi surface. The average, (@ dx 1), is
defined as

(@-k,18x,1) = Tr[pa_, dx 1], (7.213)
where the density operator, p, is defined as

e_ﬂ (fimf _llfv )
Tr[e—ﬂ(fimf—uﬁ)] )

p= (7.214)

A

The average, (&l T&J‘_k, 1>’ is similarly defined. The number operator, N, is
defined as

N=>"a] \axx (7.215)
k,\

The quantity A is called the gap function and may be real or complex. It is a
thermodynamic quantity and is a measure of the average binding energy of all
the Cooper pairs. If a macroscopic number of Cooper pairs form, then
(&L,T&J’_k’ }) ® y/n; and (&LT&“_& |) & \/n; where n. is the average number of
Cooper pairs in the fluid. A is the order parameter for this transition.

It is important to notice that the Hamiltonian, fl,,, , does not commute with
the number operator, N, if A # 0. This means that if a macroscopic number of
Cooper pairs form, the system does not conserve the particle (electron) number
and the gauge symmetry is broken. The formation of a macroscopic number of
Cooper pairs is a phase transition somewhat analogous to Bose-Einstein
condensation (cf. Section 7.H). In both cases, gauge symmetry is broken. Since
we are working in the grand canonical ensemble and only specify the average
Particle number, the fact that gauge symmetry is broken is not a problem. If a
macroscopic number of Cooper pairs form, the total energy of the system is
lowered. The transition to the condensed phase occurs when the thermal energy,
ksT, which tends to break Cooper pairs apart, becomes less important than the
Phonon-mediated attraction between electrons.

It is useful now to introduce an effective Hamiltonian

K =73 &(af g —awialy) + 0 Aldwgder + ) Awafaly |,
k k k

(7.216)
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where

Hk?
=ep — ' = —— — i 7.217
k=Ex— W=7 "-—I, ( )
and we have made use of the fermion anticommutation relations. The effective
Hamiltonian, K, differs from H,,y — uN only by a constant term. Therefore the
density operator can also be written

e'ﬁ(f{w—ﬂﬁ) elgk
p= . — = — (7.218)
Tr [e—B(HMf_l‘-N)] Tr [e",@K]

The effective Hamiltonian, K , can be written in matrix form:

k=% ) Koy, (7.219)
k
where

> €k Ak ) - a1 —t At n
Ky = , ag = , a, = (a a_g)). 7.220
k ( Aﬁ — & k &T— . k ( Kk, k,l) ( )

As was first shown by Bogoliubov [19], the effective Hamiltonian, K, can be
diagonalized by means of a unitary transformation which preserves the fermion
anticommutation relations. In so doing, we obtain the Hamiltonian for effective
excitations (called bogolons) of the system. To diagonalize the effective
Hamiltonian, we introduce a 2 x 2 unitary matrix,

Oy = ( "k ) (7.221)

—vi; Uk

Since U0y = 04U} =1 (unitarity), we must have lu|* + [we|* = 1. We also
introduce the vectors

_ Y0 _ NN
Iy = (AT ) Tl = (o A1), (7.222)
which are related to the vectors, @y, via the unitary transformation

ag = Uy Ty (7.223)

The physical significance of the vectors, Tk, will become clear below. It is easy
to show that since &L , and dy ) obey fermion anticommutation relations, the



SPECIAL TOPICS: MOMENTUM CONDENSATION 411

operators, f?f‘,i and 4xi (i=0,1), must also obey fermion anticommutation
relations

ot 3 1)s = bewbies Do ewly = Bt oA, = 0. (7.224)

If we revert Eq. (7.223), we see that 4, o decreases the momentum of the system
by #k and lowers the spin by # (it destroys a particle with quantum numbers,
(k, 1), and creates one with quantum numbers, (—k, |), whereas 4x; increases
the momentum of the system by 7k and raises the spin by #.

We now require that the unitary matrix, Uy, diagonalize the effective
Hamiltonian, K. That is,

o _ (E 0
Ok Oy =B withEy, = | <° . (7.225)
0 Ex 1

We find that Exo = Ex and Ex; = —Ex with

E =\/& + A% (7.226)

With this transformation, we have succeeded in reducing the interacting Fermi
gas of electrons to an ideal Fermi gas of bogolons. In terms of bogolon
operators, the effective Hamiltonian becomes

= Z(Ek,o ﬁl,o Yo — Ex 1 ‘7.1,1 A1 + Ex1)- (7.227)
k

The effective Hamiltonian, when written in terms of bogolon operators, looks
like that of an ideal Fermi gas. The bogolons are collective modes of the system
and play a role analogous to that of phonons in a Debye solid, although their
dispersion relation is quite different.

We can now obtain a self-consistent equation for the gap function, A. First
note that

o oo 1 o BEx o
(MeoFwo) = s e~ 2 [1 tanh (—-2 (7.228)
and

1 1 BE
ot 4 _ — = k,1
(1 Fi1) R ET=CORE [I-Hanh (—_2 )] (7.229)
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ol = (1 (el ) -<a-k,ia.‘,T>)

- <&I:,T&f-k, 1) (&Jf-k, 1&—k,l)

_ (1 ~ (o) 0 )l_ﬁ
= k . R k
0 (7[1;,1 Yk,1)

% i (tanh (BEx/2) 0 )Ul

I+ 0 —tanh (ﬂEk/Z)

R 1 - /E O ~t
= — U h (BEx/2
1+2EkUk(0 _Ek> k tanh (GEx/2)

N =

1. 1
~1+—Ky tanh (BEy/2). .
3 L+ 3 R tanh (BEx/2) (7.230)

Let us now equate off-diagonal matrix elements. We write
A Ag
—(@-kaK,1) = Etanh (BEk/2) (7.231)

If we multiply Eq. (7.231) by V) , integrate over k, and use Eqs. (7.211) and
(7.212), we obtain

1=V, ;’ﬁtanh (BEx/2). (7.232)

It is useful to note that under the primed summation the bogolon energy can be

written Ex = /&2 + |A|2. Equation (7.232) is the equation for the gap function.
It has been obtained from the grand canonical ensemble. Therefore, the
solutions of the gap equation correspond to extrema of the free energy. The
solution at a given temperature which corresponds to the stable thermodynamic
state is the one which minimizes the free energy. Since the energy, Ex, depends
on the gap, Eq. (7.232) is rather complicated.

Let us now determine some properties of the gap function from Eq. (7.232).
If we assume that the system is contained in a large volume, V, we can change
the summation to an integration [cf. Eq. (7.162)]. Note that

oo 3/2 0o
A I it =" VJ d&c/& T 17, (7.233)

— 2m ), V2R )y

where we have Eg. (7.217). The summation, ZL, which is restricted to the
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neighborhood of the Fermi surface, can be written

m3/2V Ae

Ae
Y '~ ﬁﬂpj EﬁdszN(O) J_Aedgk, (7.234)

k -A

where we have set u ~ ¢ (¢ is the Fermi energy) and N(0) = mVk;/2n?h? is
the density of states at the Fermi surface for a single spin state (cf. Exercise
7.9). We can now write Eq. (7.232) as

st (G\/EEHIADF
1= VoN(O)J déx
0 Ve + 1AM

(7.235)

Equation (7.235) determines the temperature dependence of the gap, A(T), and
can be used to find the transition temperature.
The energy of bogolons (measured from the Fermi surface) with momentum

kkis Ex = \/ €2 + |A(T)|. It takes a finite energy to excite them, regardless of
their momentum, because there is a gap in the energy spectrum. At the critical
temperature, T, the gap goes to zero and the excitation spectrum reduces to that
of an ideal Fermi gas. The critical temperature can be obtained from Eq.
(7.235). It is the temperature at which the gap becomes zero. Thus, at the
critical temperature we have

) A tanh (8] A:8¢/2 tanh(x)
1 = VoN(0) JO dfe—rp 2= =N(O)Vo L = (7.236)
= N(O) Voln [% ﬁcAE] ’

where (3, = (kBTc)_l, a = 2.26773, and we have used the fact that

r (anh(x) 4 — in(ob), (7.237)
0 X

for b > 100. Thus, Eq. (7.236) holds when (.Ae/2 > 100. This means that
N(0)Vy < 0.184 and therefore use of Eq. (7.236) restricts us to fairly weakly
coupled systems. From Egs. (7.236) and (7.237) we obtain

kT, = -‘;‘-Ase-'/"’(")%, (7.238)

for 8,Ae/2 > 100. Thus, the critical temperature, T, varies exponentially with
the strength of the attractive interaction.
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We can also use Eq. (7.235) to find the gap, A(0) = Ay, at T = 0 K. Since
tanh(oo) = 1, we can write

Ae 1 Ae
1 = VyN(0 d —=VNOsinh"'(—), 7.239
0 ( )J;) é'k m 0 ( ) AO ( )
or
Ae ~ 2Aee”/NOVo, (7.240)

B0 = b (1/VoN(0))

The rightmost expression for Ay applies for weakly coupled systems when
N(0)Vy < 0.184. Comparing Egs. (7.238) and (7.240), we obtain the following
relation between the critical temperature and the zero temperature gap for
weakly coupled systems:

Ay 4
=—=1.764. 7.241
kBTC (81 ( )

Equation (7.241) is in good agreement with experimental values of this ratio for
superconductors. Equation (7.235) may be solved numerically to obtain a plot
of the gap as a function of temperature. The gap function is a real function for
the case (such as we are considering here) when no supercurrent is present. We
show the behavior of A(T) in Fig. 7.24 for weakly coupled systems.

Since bogolons form an ideal gas, the entropy can be written in the form

S=~2ks Y _[mdn(mc) + (1 — m)In(1 — m)], (7.242)
k

where ny = (1 + eﬂE")_1 (cf. Problem 7.23). The heat capacity, Cy y, is easy to

Fig. 7.24. A plot of the ratio A(T)/Ao
0 +— versus the reduced temperature, 7/7,, for
0 T/T, 1 a weakly coupled system.
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find from Eq. (7.242). let us first note that for a Fermi gas at very low tempera-
ture we have p ~ g¢, where & is the Fermi energy, and (8p/9T)y (y =~ 0. Thus,

[0S ank ny
v = T(aT) V,(N) ~ 20k Z (1 - "k)

B aA (7.243)

We can now examine the heat capacity, both at the critical temperature and in
the limit 7 — 0 K.

Let us first look at the neighborhood of the critical point. The first term in Eq.
(7.243) is continuous at T = T, but the second term is not since 8|Ax|* /9 has
a finite value for T < T, but is zero for T > T,.. Near T = T,, we may let
Ex — |éx|. Then the heat capacity just below the critical temperature is

. omy o1
Cyn™ ZﬁckBZalé. | ( 2 c( a8 )T=T), (7.244)

and just above the critical temperature it is

)
Cyn ~ —20:ks Z a|Zk| (7.245)

The discontinuity in the heat capacity at the critical temperature is

a|A? O (¢
ACvy = C‘f,(zv) V(N —Bcks Z/( laﬁl ) ;gkrl)

2
= —kgB2N(0) (%) N(0) (alaArl ) (7.246)

Thus, the heat capacity has a finite discontinuity at the critical temperature, as
we would expect for a mean field theory.

Let us now compute the heat capacity in the limit 7 — 0. As we can see
from Fig. 7.24, the gap function, A, approaches a finite value, Ay, as T — 0 and
OA/OT — 0 as T — 0. As a result the heat capacity takes a fairly simple form
in the limit T — 0. If we assume that i/ ~ €r and A ~ Ay in Eq. (7.243), then
the heat capacity takes the form

ank 2 ) [4

BEyx
(7 .247)
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where Ex = \/gki + AOZ. In order to change Eq. (7.247) it is useful to introduce
the bogolon density of states. We can write

m3/2y J»oo m3/2y JOO[ 1/2 ExdEy
== exdex = EZ—A2+E:i ————
in Var Jo VN T Ve Ja LIV TR T T R = A
(7.248)

For momenta, k = k;, the density of states is singular. Therefore, the dominant
contribution to the integral comes from the neighborhood of the Fermi surface
and we can write

©  ExdEy
Xk: ~ N(0) JAO — (7.249)

VEI(_AO

Let us next note that in the limit 7 — 0 we can write e?5x /(1 + ¢#5x)? ~ ¢PEx
Thus, the heat capacity takes the form

3
o0 EkdEk e_ﬂEk .

Cyn ~ 23%ksN(0) J (7.250)
Ao VEE — A§
The integral in Eq. (7.250) is easy to do if we use a trick. Note that
*  ExdEx  _
I=| ————=e¢B = Aok (BAy), 7.251
JAO \/Eﬁ——Ag 0 1(ﬁ 0) ( )
where K; is a modified Bessel function [19]. But
———e =—=-Aj[3K + K3(BA)]. 7.252
jAo \/E,%——A% 3,32 4 0[ 1(:3A0) 3(ﬁ 0)] ( )
Thus, the heat capacity takes the form
1
Cyn = 5 BksN(0) AJ[3K:1(8A0) + K3(5A0)]- (7.253)

If we now make use of the asymptotic form of the modified Bessel functions,
K.(BAo) = \/7/23A¢ e PP, the heat capacity takes the form

Cyn ~ V21 2kgN(0) A3/ *e~F0 (7.254)

in the limit T — 0. Thus, the heat capacity of the condensed Fermi fluid goes to
zero exponentially with temperature rather than linearly as in the case for an
ideal Fermi gas. In Fig. 7.25 we show a sketch of the heat capacity of the
interacting Fermi fluid (superconductor). The solid line is the Fermi fluid, and
the dashed line is an ideal Fermi gas.
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N

Fig. 7.25. A sketch of the heat capacity for a superconductor. The straight dashed line
gives the heat capacity in the absence of interaction (ideal Fermi gas). The solid line
shows the jump in the heat capacity at the critical point and the exponential decay for
temperatures below the critical point.
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Fig. 7.26. Variation of A /ksT, with reduced temperature, T/Ty, for tin. The data points
are obtained from ultrasonic acoustic attenuation measurements [20] for two different
frequencies. The solid line is BCS theory. Reprinted, by permission, from R. W. Morse
and H. V. Bohm, Phys. Rev. 108, 1094 (1954).

The mean field theory gives a surprisingly good description of the behavior
of real superconductors. In Fig. 7.26 we show experimental measurements of
the gap function, A, as a function of temperature for tin. The solid line is the
Mean field theory of Bardeen, Cooper, and Schrieffer. The experimental points,
\yhich are obtained from ultrasonic accoustic attenuation measurements [21],
fit it very well.



