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PREFACE

This book was conceived as a slim monograph, but grew to its present size
as I attempted to set down an account of two-dimensional lattice models
in statistical mechanics, and how they have been solved. While doing so
I have been pulled in opposite directions. On the one hand 1 remembered
the voice of the graduate student at the conference who said ‘But you've
left out all the working—how do you get from equation (81) to (82)?" On
the other hand I knew from experience how many sheets of paper go into
the waste-paper basket after even a modest calculation: there was no way
they could all appear in priat.

I hope I have reached a reasonable compromise by signposting the route
to be followed, without necessarily giving each step. I have tried to be
selective in doing so: for instance in Section 8.13 I discuss the functions
k(o) and g(«) in some detail, since they provide a particularly clear example
of how elliptic functions come iato the working. Conversely, in (8.10.9)
I merely quote the result for the spontanecus staggered polarization P, of
the F-model, and refer the interested reader to the original paper: its
calculation is ong and technical, and will probably one day be superseded
when the eight-vertex model conjecture (10.10.24) is verified by methods
similar to those used for the magnetization result (13.7.21),

There are ‘down-to-earth’ physicists and chemists who reject lattice
models as being unrealistic. In its most extreme form, their argument is
that if a model can be solved exactly, then it must be patholegical. I think
this is defeatist nonsense: the three-dimensional Ising model is a very
realistic model, at least of a two component afloy such as brass. If the
predictions of universality are corrected, then they should have exactly the
same critical exponents. Admittedly the Ising model has been solved only
in one and two dimensions, but two-dimensional systems do exist (sce
Section 1.6), and can be quite like three-dimensional ones. It is true that
the two-dimensional Ising model has been solved only for zero magnetic

v



vi PREFACE

field, and that this case is quite unlike that of non-zero field; but physically
this means Onsager solved the most interesting and tricky case. His solution
vastly helps us understand the full picture of the Ising model in a field.

In a similar way, the eight-vertex model helps us understand more
complicated systems and the variety of behaviour that can occur. The hard
hexagon model is rather special, but needs no justification: It is a perfectly
good lattice gas and can be compared with a helium monolayer adsorbed
onto a graphite surface (Riedet, 1981).

There is probably also a feeling that the models are ‘too hard” math-
ematically. This does not bear close examination: Ruelle (1969) rightly
says in the preface to his book that if a problem is worth looking at at ali,
then no mathematical technigue is to be judged too sophisticated.

Basically, 1 suppose the justification for studying these lattice models is
very simple: they are relevant and they can be solved, so why not do so
and see what they tell us?

In the title the phrase ‘exactly solved’ has been chosen with care. It is
not necessarily the same as ‘rigorously solved’. For instance, the derivation
of (13.7.21) depends on multiplying and diagonalizing the infinite-dimen-
sional corner transfer matrices. It ought to be shown, for instance, that the
matrix products are convergent. I have not done this, but believe that they
are (at least in a sense that enables the calculation to proceed), and that
as a result (13.7.21) is exactly correct.

There is of course still much to be done. Barry McCoy and Jacques Perk
rightly pointed out to me that whereas much is now known about the
correlations of the Ising model, almost nothing is known about those of
the eight-vertex and hard hexagon models.

There are many people to whom I am indebted for the opportunity to
write this book, In particular, my interest in mathematics and theoretical
physics was nurtured by my father, Thomas James Baxter, and by Sydney
Adams, J. C. Polkinghorne and K. J. Le Couteur. Elliott Lieb initiated
me into the complexities of the ice-type models. Louise Nicholson and
Susan Turpie worked wonders in transforming the manuscript into immacu-
late typescript. Paul Pearce has carefully read the proofs of the entire
volume. Most of all, my wife Elizabeth has encouraged me throughout,
particularly through the last turbulent year of writing.

R. J. Baxter
Canberra, Australia

February 1982
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1
BASIC STATISTICAL MECHANICS

1.1 Phase Transitions and Critical Points

As its name implies, statistical mechanics is concerned with the average
properties of a mechanical system. Obvious examples are the atmosphere
inside a room, the water in a kettle and the atoms in a bar magnet. Such
systems are made up of a huge number of individual components (usually
molecules ). The observer has little, if any, control over the components:
all he can do is specify, or measure, a few average properties of the system,
such as its temperature, density or magnetization, The aim of statistical
mechanics is to predict the relations between the observable macroscopic
properties of the system, given only a knowledge of the microscopic forces
between the components.

For instance, suppose we knew the forces between water molecules.
Thea we should be able to predict the density of a kettleful of water at
room temperature and pressure. More interestingly, we should be able to
predict that this density will suddenly and dramatically change as the
temperature is increased from 99°C to 101°C: it decreases by a factor of
1600 as the water changes from liquid to steam. This is known as a phase
transition.

Yet more strange effects can occur. Consider an iron bar in a strong
magnetic field, H, parallet to its axis. The bar will be almost completely
magnetized: in appropriate units we can say that its magnetization, M, is
+1. Now decrease H to zero; M will decrease, but not to zero. Rather,
at zero field it will have a spontareous magnetization Mo.

On the other hand, we expect molecular forces to be invariant with
respect to time reversal. This implies that reversing the field will reverse
the magaetization, so M must be an odd function of H. It follows that

1



2 1 BASIC STATISTICAL MECHANICS

M(H) must have a graph of the type shown in Fig. 1.1(a), with a dis-
continuity at H = 0.

This discontinuity in the magnetization is very like the discontinuity in
density at a liquid — gas phase transition. In fact, in the last section of this
chapter it will be shown that there is a precise equivaience between them.

M M
1-1&/'/ '
Mn'|'
H H *
=1 ¥ -1
o} 1.3]

k J

-1
(3]

Fig. 1.1. Graphs of M(H) for (a} T< T, (b) T=T., () T> T..

The iron bar can be regarded as undergoing a phase transition at H =10,
changing suddenly from negative to positive magnetization. In an actual
experiment this discontinuity is smeared out and the phenomenon of
hysteresis occurs: this is due to the bar not being in true thermodynamic
equilibrium. However, if the iron is soft and subject to mechanical dis-
turbances, a graph very close to that of Fig. 1.1(a) is obtained (Starling
and Woodall, 1953, pp. 280-281; Bozorth, 1951, p. 512).

The above remarks apply to an iron bar at room temperature. Now
suppose the temperature T is increased slightly. It is found that M(H ) has
a similar graph, but M, is decreased. Finally, if T is increased to a critical
value T (the Curie point ), M, vanishes and M(H) becomes a continuous
function with infinite slope (susceptibility) at A =0, as in Fig. 1.1(b).

If T is further increased, M(H) remains a continuous function, and
becomes analytic at H =0, as in Fig. 1.1(c).
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These observations can be conveniently summarized by considering a
(T, H) plane, as in Fig. 1.2. There is a cut along the T axis from 0 to T..
The magnetization M is an analytic function of both T and H at all points
in the right-half plane, except those on the cut. It is discontinuous across

the cut.

Fig. 1.2, The (T, H) half-plane, showing the cut across which M is discontinuous.
Elsewhere M is an analytic function of T and H.

The cut is a line of phase transitions. Its endpoint (7, ,0) is known as
a critical point. Clearly the function M(H , T) must be singular at this
point, and one of the most fascinating aspects of statistical mechanics is
the study of this singular behaviour near the critical point.

M T
OI.I

>

0 T. T

Fig. 1.3. The spontancous magnetization M, as a function of temperature.
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The spontaneous magnetization is a function of T and can be defined as
M(T) =n!i“(§* M(H,T), (1.1.1)

the limit being taken through positive values of H. It has a graph of the
type shown in Fig. 1.3, being positive for T < T, and identically zero for
Tr>T..

Criticat Exponents
The susceptibility of a magnet is defined as
_OM(H, T)
MH, Ty =———. (1.1.2)

When considering critical behaviour it is convenient to replace T by
t=(T—-THNT,. {1.1.3)

Then the thermodynamic functions must have singularities at H = ¢ = 0.
It is expected that these singularities will normally be simple non-integer
powers; in particular, it is expected that

M(T) ~(-t)* ast—0", (1.1.4)
M(H,T.)~H" asH—0, (1.1.5)
x0, 7y ~rt7 ast— 0", (1.1.6)
w0, T) ~(=n)7" ast—0". (1.1.7)

Here the notation X' ~ Y means that X/Y tends to a non-zero limit. The
power-law exponents 8, 4, y, ¥ are numbers, independent of H and T:
they are known as critical exponents.

For brevity, the phrase ‘near T, will be frequently used in this book to
mean ‘near the critical point’, it being implied that H is small, if not zero.

1.2 The Scaling Hypothesis

It is natural to look for some simplified form of the thermodynamic functions
that will describe the observed behaviour near 7., Widom (1965) and
Domb and Hunter (1965 ) suggested that certain thermodynamic functions
might be homogeneous. In particular, Griffiths (1967) suggested that H
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might be a homogeneous function of M and ¢. Since F is an odd function
of M, this means that near T,

HikT. = M|M{® 1 hyt| M|~ (1.2.1)

where §and & are numbers (as yet undefined), & is Boltzmann’s constant,
and A«(x) is a dimensionless scaling function. A typical graph of hJ(x) is
shown in Fig. 1.4: it is positive and monotonic increasing in the interval
—xp < x << oo, and vanishes at — xq.

Note that (1.2.1}) implies that H is an odd function of M, as it should
be.

htxt o

:—"'/ -

- x

Fig. 1.4, The scaling function #,(x) for the square-lattice Ising model {Gaunt and
Domb, 1970).

The scaling hypothesis predicts certain relations between the critical
exponents. To see this, first consider the behaviour on the cut in Fig. 1.2.
Here H= 0, t<0and M = =M,. From (1.2.1) the function 4;(x ) must be
Zero, 80 X = —Xp, L.€.

1= —xp| M|V2. (1.2.2)

The relation (1.1.4) follows, so Bin (1.2.1) is the critical exponent defined
in (1.1.4).

Now set £ =0 (1.2.1). Since k,(0) is non-zero, this implies that near T,

H~M, (1.2.3)

in agreement with (1.1.5). Hence the & in (1.2.1) is the same as that in
(1.1.5).

Differentiate (1.2.1) with respect to M, keeping ¢ fixed. From (1.1.2)
this gives

(kTex)™ = |MP1 [8hx) — B~xhy(x)] (12.4)
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where
x = t|M|7VE, (1.2.5)

Again consider the behaviour on the cut in Fig. 1.2. Here x has the fixed
value —x;, so

x—] — |Mlﬁ'—l — (_t)ﬁa"l.) . (1.2-6)

This agrees with (1.1.7), and predicts that the critical exponent ¥’ is given
by

v =p6-1). (1.2.7)

To obtain (1.1.6) from the scaling hypothesis, we need the large x
behaviour of the scaling function h,(x). This can be obtained by noting
that for fixed positive ¢, we must have

H~M asM— 0. (1.2.8)
Comparing this with (1.2.1), we see that
h(x) ~ xPo-1) asx —» o0, (1.2.9)
From (1.2.1) and (1.2.9), it follows that for arbitrary small positive 1,
H~ #0-pyp asM—0, (1.2.10)
so from (1.1.1),
w0, T)~ ¢ PO-1) ast— 0%, (1.2.11)

Comparing this with (1.1.6), and using (1.2.7), we see that the scaling
hypothesis predicts the exponent relations
y=y =86-1). (1.2.12)

Other exponents «, », ¥/, i, ¢ will be defined in Section 1.7, but for
completeness the various scaling predictions are listed here:

a+28+y =2, (1.2.13)
v=v 2-9)v=yvy, (1.2.14)
p+rv=2-a, (1.2.15)
dvr=2—-a, (1.2.16)

where d is the dimensionality of the system.

A partial derivation of (1.2.14) will be given in Section 1.7, but it is
beyond the scope of this book to attempt to justify all these relations: the
interested reader is referred to the articles by Widom (1965), Fisher (1967),
Kadanoff et al. (1967), Hankey and Stanley (1972), Stanley (1971) and
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Vicentini-Missoni (1972). Their relevance here is that exactly solved models
can be used to test the relations, and indeed we shall find that scaling
passes every possible test for the models to be discussed.

The scaling relations (1.2.12)—(1.2.15) are in good agreement with avail-
able experimental and theoretical results, and the scaling function A,(x)
has been obtained approximately for a aumber of systems (see for example
Gaunt and Domb, 1970).

The iast relation (1.2.16) involves the dimensionality 4. It is derived by
making further assumptions, known as ‘strong scaling’ or ‘hyperscaling’.
It is expected to be valid for d = 4, but there is some question whether it
is consistent with available numerical results for three- and four-dimensional
models (Baker, 1977). The total set of equations (1.2.12)-(1.2.16) is
sometimes known as ‘two ¢xponent’ scaling, since if two independent
exponents (such as & and ) are given, then all other exponents can be
obtained from the equations.

1.3 Universality

Consider a system with conservative forces. Let s denote a state (or
configuration) of the system. Then this state will have an energy E(s),
where the function E(s) is the Hamiltonian of the system.

The thermodynamic properties, such as M(H , T) and 7, are of course
expected to depend on the forces in the system, i.e. on E(s). However,
it is believed (Fisher, 1966; Griffiths, 1970} that the critical exponents are
‘universal’, i.e. independent of the details of the Hamiltonian E(s).

They will, of course, depend on the dimensionality of the system, and
on any symmetrics in the Hamiltonian. To see the effect of these, suppose
E(s) can be written as

E(s) = Eo(s) + AE(s) (1.3.1)

where Eo(s} has some symmetry (such asinvariance under spatial reflection )
and E,(s) has not. The critical exponents are then supposed to depend on
A only in so far as they have one value for A = 0 (symmetric Hamiltonian),
and another fixed value for A # 0 (non-symmetric). For example, there
would be two numbers Sy, §; such that

8= ifA=0
=B ifA#£0, (1.3.2)

B being discontinuous at A = (.
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On the other hand, if Ey(s) is some simple Hamitonian and E\(s) is
very complicated, but they have the same dimensionality and symmetry,
then § should be completely constant, evenr at A = 0. The implications of
this are far reaching. One could take a realistic and complicated Hamil-
tonian E(s), ‘strip’ it to a highly idealized Hamiltonian Ey(s), and still
obtain exactly the same critical exponents. For instance, on these grounds
it is believed that carbon dioxide, xenon and the threc-dimensional Ising
model should all have the same critical exponents. To within experimental
error, this appears to be the case (Hocken and Moldover, 1976).

There are some difficulties: there is usually more than one way of
describing a system, in particular of labelling its states. In one of these
there may be an obvious symmetry which occurs for some special values
of the parameters. In another formulation this symmetry may not be
obvious at all. Thus if the second formulation were used, and these special
values of the parameters were accidentaily chosen, then the critical expo-
nents could be unexpectedly different from those appropriate to other
values.

Also, in this book the solution of the two-dimensional ‘eight-vertex’
model will be presented. This has exponents that vary continuously with
the parameters in the Hamiltonian. This violates the universality hypoth-
esis, but it is now generally believed that such violations only occur for
very special classes of Hamiltonians.

It should be noted that scaling and universality, while commonly grouped
together, arc independent assumptions. One may be satisfie and the other
not, as in the case of the eight-vertex model, where universality fails but
scaling appears to hold.

1.4 The Partition Function

How do we calculate thermodynamic functions such as M(H , T) from the
microscopic forces between the components of the system? The answer
was given by John Willard Gibbs in 1902, Consider a system with states
s and Hamiltonian E(s). Form the partition function

z=§mﬂ—smmﬂ, (1.4.1)

where k is Boltzmann’s constant and the summation is over all allowed
states s of the system. Then the free energy F is given by

F=-kThhZ. (1.4.2)
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Also, the probability of the system being in a state s is
Z lexp[— E(sVkT], (1.4.3)

so if X is some observable property of the system, such as its total energy
or magnetization, with value X(s) for state s, then its observed average
thermodynamic value is

(X) = Z7' 2, X(s) exp[ — E(s)/kT] . (1.4.4)
In particular, the internal energy is
U = (E)
= Z™' D, E(s) exp[ - E(s)/kT], (1.4.5)
¥
and by using the above definitions (1.4.1) and (1.4.2) we can verify that
i}
= 2 e
U=kT*—=InZ
= - Tzi(FfT) (1.4.6)
— , 4.

in agreement with standard thermodynamics.

The basic problem of equilibriumn statistical mechanics is therefore to
calculate the sum-over-states in (1.4.1) (for continuum systems this sum
becomes an integral, for quantum mechanical ones a trace). This will give
Z and F as functions of T and of any vartables that occur in E(s), such as
a magnetic field. The thermodynamic properties can then be obtained by
differentiation.

Unfortunately, for any realistic interacting system of macroscopic size,
including the examples mentioned above, the evaluation of Z is hopelessly
difficult. One is therefore forced to do one or both of the following:

A. Replace the real system by some simple idealization of it: this
idealization is known as a model. Mathematically, it consists of
specifying the states s and the energy Hamiltonian function E(s).

B. Make some approximation to evaluate the sum-over-states (1.4.1).

1.5 Approximation Methods

Let us consider the step (B) above. Some of the better-known approxi-
mation schemes are:

(i) Cel! or cluster approximations. In these the behaviour of the whole
system is extrapolated from that of a very few components inside
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some ‘cell’, approximations being made for the interaction of the
cell with the rest of the system. Examples are the mean-field (Bragg
and Williams, 1934; Bethe, 1935), quasi-chemical (Guggenheim,
1935) and Kikuchi (1951) approximations. They have the advantage
of being fairly simple to solve; they predict the correct qualitative
behaviour shown in Figs. 1.1 to 1.3, and are reasonably accurate
except near the critical point (Domb, 1960, pp. 282-293; Burley,
1972).

(ii) Approximate integral equations for the correlation functions,
notably the Kirkwood (1935), hyper-netted chain (van Lecuwen ef
al., 1959) and Percus-Yevick (Percus and Yevick, 1958; Percus,
1962) equations. These give fairly good numerical values for the
thermodynamic properties of simple fluids.

(iii) Computer calculations on systerns large on a microscopic scale (e.g.
containing a few hundred atoms), but still not of macroscopic size.
These calculations evaluate Z by statistically sampling the terms on
the RHS of (1.4.1), so are subject to statistical errors, usually of a
few per cent. For this reason they are really ‘approximations’ rather
than ‘exact calculations’.

(iv) Series expansions in powers of some appropriate variable, such as
the inverse temperature or the density. For very realistic models
these can only be obtained to a few terms, but for the three-
dimensional Ising model expansions have been obtained to as many
as 40 terms (Sykes ef al., 1965, 1973a).

The approximation schemes (i) to (iii ) can give quite accurate values for
the thermodynamic properties, except near the critical point. There is a
reason for this: they all involve neglecting in some way the correlations
between several components, or two components far apart. However, near
T. the correlations become infinitely-long ranged, all components are
correlated with one another, and almost any approximation breaks down.
This means that approximations like (i), (ii) and (tii) are of little, if any,
use for determining the interesting cooperative behaviour of the system
near T,.

Method (iv) is much better: if sufficient terms can be obtained then it
is possible, with considerable ingenuity, to obtain plausible guesses as to
the nature of the singularities of the thermodynamic functions near the
critical point. In particular, the best estimates to date of critical exponents
in three dimensions have been obtained by the series expansion method.
However, an enormous amount of work is required to obtain the series,
and the resulting accuracy of the exponents is still not as good as one would
like.
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(v) There is another approach, due to Kadanoff (1966) and Wilson
(1971) (see also Wilson and Kogut, 1974; Fisher, 1974): this is the
so-called renormalization group. In this method the sum over states
(1.4.1) is evalvated in successive stages, a ‘renormalized’ Hamil-
tomian function E(s) being defined at each stage. This defines a
mapping in Hamiltonian space. If one makes some fairly mild
assumptions about this mapping, notably that it is analytic, then it
follows that the thermodynamic functions do have branch-point
singularities such as (1.1.4) at T,, that the scaling hypothesis (1.2.1)
and the relations (1.2.12)—(1.2.16) are satisfied, and that the expo-
nents of the singularities should normally be universal (Fisher, 1974,
p- 602).

In principle, the renormalization group approach could be carried
through exactly. However, this is more difficult than calculating the par-
tition function directly, so to obtain actual numerical resvlts some approx-
imation method is needed for all but the very simplest models, The fas-
cinating result is that quite crude cell-type approximations give fairly
accurate values of the critical exponents (Kadanoff et al., 1976). The reason
for this is not yet fully understood.

To summarize: approximate methods (step B) either fail completely near
7., or require considerable acts of faith in the assumptions made.

1.6 Exactly Solved Models

Another approach is to use step A to the fullest, and try to find models
for which E(s) is sufficiently simple that the partition function (1.4.1) can
be calculated exactly. This may not give useful information about the valuves
of the thermodynamic functions of real systems, but it will tell us quali-
tatively how systems can behave, in particular near 7. In fact if we could
solve a model with the same dimensionality and symmetry as a real system,
universality asserts that we should obtain the exact critical exponents of
the real system.

There is a further condition for universality, which was not mentioned
in Section 1.3. In most physical systems the intermolecular forces are
effectively short ranged: in inert gases they decay as r~, r being the distance
between molecules; in crystals it may be sufficient to regard each atom as
interacting only with its nearest neighbour. The infinite-range correlations
that occur at a critical point are caused by the cooperative behaviour of
the system, not by infinite-range interactions.
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If, on the other hand, sufficiently long-range interactions are included
in E(s), they clearly can affect the way the correlations become infinite
near T,, and it comes as no surprise that critical exponents can be altered
in this way. Thus universality only applies to systems with the same range
of interactions. To obtain the correct critical behaviour, a model of a real
system should not introduce non-physical long-range interactions.

Unfortunately no short-range genuinely three-dimensional model has
been solved. The simplest such model is the three-dimensional Ising model
(which will be defined shortly): this has been extensively investigated using
the series expansion method (Gaunt and Sykes, 1973), but no exact solution
obtained.

The models of interacting systems for which the partition function (1.4.1)
has been calculated exactly (at least in the limit of a large system) can
generally be grouped into the following four classes.

One-Dimensional Models

One-dimensional models can be solved if they have finite-range, decaying
exponential, or Coulomb interactions. As guides to critical phenomena,
such models with short-range two-particle forces {including exponentially
decaying forces) have a serious disadvantage: they do not have a phase
transition at a non-zero temperature (van Hove, 1950; Lieb and Mattis,
1966). The Coulomb systems also do not have a phase transition, (Lenard,
1961; Baxter, 1963, 1964 and 1963), though the one-dimensional electron
gas has long-range order at all temperatures (Kunz, 1974).

Of the one-dimensional models, only the nearest-neighbour Ising model
(Ising, 1925; Kramers and Wannier, 1941) will be considered in this book.
It provides a simple introduction to the transfer matrix technique that will
be used for the more difficult two-dimensional models. Although it does
not have a phase transition for non-zero temperature, the correlation length
does become infinite at H = T = 0, so in a sense this is a ‘critical point’ and
the scaling hypothesis can be tested near it.

A one-dimensional system can have a phase transition if the interactions
involve infinitely many particles, as in the cluster interaction model (Fisher
and Felderhof, 1970, Fisher, 1972). It can also have a phase transition if
the interactions become infinitely long-ranged, but then the system really
belongs to the following class of ‘infinite-dimensional’ models.

‘Infinite Dimensional’ Models

To see what is meant by an ‘infinite dimensional’ system, one needs a
working definition of the effective dimensionality of a2 Harmltonian. For
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a system with finite or short-range interactions in all available directions
there is usually no problem: the dimensionality is that of the space
considered.

For other systems, a useful clue is to note that the dimensionality of a
lattice can be defined by starting from a typical site and counting the
number of sites that can be visited in a walk of # steps. For a d-dimensional
regular lattice and for »n large, this is proportional to the volume of a box
of side n, i.e. to n?. The larger the dimensionality, the more close neighbours
there are to each site.

If the number of neighbours becomes infinite, then the system is effec-
tively infinite-dimensional. Such a system is the mean-field model discussed
in Chapter 3. In Chapter 4 the Ising model on the Bethe lattice is considered.
This ‘lattice’ has the property that the number of neighbours visited in »
steps grows exponentially with n. This is a faster rate of growth than »¢,
no matter how large d is, so again this model is infinite-dimensional.

The resuits for these two models are the same as those obtained from
the mean-field and Bethe approximations, respectively, for regular lattices
(Section 1.5). Thus these two approximations are equivalent to replacing
the original Hamiltonian by an infinite-dimensional model Hamiltonian.

Kac et al. (1963/4) considered a solvable one-dimensional particle model
with interactions with a length scale R. For such a model it is appropriate
to define ‘close neighbours’ as those particles within a distance R of a given
particle. They then let R— < and found that in this limit (and only in this
limit) there is a phase transition. From the present point of view this is not
surprising: by letting R-—» <« the number of close neighbours becomes
infinite and the system effectively changes from one-dimensionat to
infinite-dimensional. A remarkable feature of this system is that the equa-
tion of state is precisely that proposed phenomenologically by van der
Waals in 1873 (eq. 1.10.1), All these three ‘infinite-dimensional’ models
satisfy the scaling hypothesis (1.2.1), and have classical exponents (see
Section 1.10).

The Spherical Model

As originally formulated (Montroll, 1949; Berlin and Kac, 1952), this
model introduces a constraint coupling all components equally, no matter
how far apart they are. Thus it is ‘unphysical’ in that it involves infinite
range interactions. However, Stanley (1968) has shown that it can be
regarded as a limiting case of a system with only nearest neighbour inter-
actions. The model is discussed in Chapter 5. It is interesting in that its
exponents are noft classical in three dimensions.
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Two-Dimensional Lattice Models

There are a very few two-dimensional models that have been solved (i.e.
their free energy calculated), notably the Ising, ferroelectric, eight-vertex
and three-spin models, These are all ‘physical’ in that they involve only
finite-range interactions; they exhibit critical behaviour. The main attention
of this book will be focussed on these models.

It is of course unfortunate that they are only two-dimensional, but they
still provide a qualitative guide to recal systems. Indeed, there are real
crystals which have strong horizontal and weak vertical interactions, and
so are effectively two-dimensional. Examples are K;NiF, and Rb,MnF,
(Birgenau e af., 1973; Als-Nielsen et al., 1975). The models may provide
a very good guide to such crystals.

What is probably more unfortunate is that most of the two-dimensional
models have only been solved in zero field (H = 0), so oaly very limited
information on the critical behaviour has been obtained and the scaling
functions h(x) have not been calculated. The one exception is the ferro-
electric model in the presence of an ¢lectric field, but this turns out to have
an unusual and atypical behaviour (Section 7.10).

1.7 The General Ising Model

Most of the models to be discussed in this book can be regarded as special
cases of a general Ising model, which can be thought of as a model of a
magnet. Regard the magnet as made up of molecules which are constrained
to lie on the sites of a regular lattice. Suppose there are N such sites and
molecules, labelledi=1, ..., N.

Now regard each molecule as a microscopic magnet, which either points
along some preferred axis, or points in exactly the opposite direction. Thus
each molecule { has two possible configurations, which can be labelled by
a ‘spin’ variable o; with values +1 (parallel to axis) or —1 (anti-parallel).
The spin is said to be ‘up’ when o; has value +1, ‘down’ when it has value
—1, Often these values are written more briefly as + and —. Let

o=1{¢1,-.., On}

denote the set of all N spins. Then there are 2¥ values of o, and each such
value specifies a state of the system. For instance, Fig. 1.5 shows a system
of 9 spins in the state

a={+!+$+!lﬁ+!&9+}_~)—}o (1.?.1)
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The Hamiltonian is now a function E(x,..., oy) of the N spins
G, - . ., Gy, Or more briefly a function E(¢) of ¢ It is made up of two

parts:
E(0) = E(0) + E\(0), (1.7.2)

where E; is the contribution from the intermolecular forces inside the
magnet, and (o) is the contribution from the interactions between the
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Fig. 1.5, An arrangement of spins on a square lattice with fabelled sites. Fuli circles
denote up (positive) spins, open circles denote down (negative) spins.

spins and an external magnetic field. Since o; is effectively the magnetic
moment of molecule i, E,(0) can be written as

E\(0) = —H;of, (1.7.3)

where H is proportional to the component of the ficld in the direction of
the preferred axis. From now on we shall refer to H simply as ‘the magnetic
field’. The sum in (1.7.3) is over all sites of the lattice, i.e. over i =
l,...,N.

In a physical system we expect the interactions to be invariant under
time reversal, which means that E is unchanged by reversing all fields and

magnetizations, i.e. by negating Hand & , . . ., ox. It follows that Ey must
be an even function of o, i.e.
Efoy,...,on)=Ef—01,..., —0On). (1.7.4)

These relations define a quite general Ising model, special cases of which
have been solved. From a physicist’s point of view it is highly simplified,
the obvious objection being that the magnetic moment of a molecule is a
vector pointing in any direction, not just up or down. One can build this
property in, thereby obtaining the classical Heisenberg model (Stanley,
1974), but this model has not been solved in even two dimensions.

However, there are crystals with highiy anisotropic interactions such that
the molecular magnets effectively point only up or down, notably FeCl,
(Kanamori, 1958) and FeCQ; (Wrege ¢t al., 1972). The three-dimensional
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Ising model should give a good description of these, in fact universality
implies that it should give exactly correct critical exponents.

The gaps in Sections 1.1, 1.2 and 1.4, notably a statistical-mechanical
definition of M(H , T) and the critical exponents «, », ¥, #t, can now be
filled in. From (1.4.1), {1.7.2) and (1.7.3), the partition function is a
function of N, H and T, so can be written

Zu(H,T) = 2 exp{—[Eo0) — H 2 o)/kT}. (1.7.5)

Free Energy and Specific Heat

Physically, we expect the free energy of a large system to be proportional
to the size of the system, i.e. we expect the thermodynamic limit

F(H,T) = —kT lim N"'In Zy(H , T) (1.7.6)
MN=w

to exist, f being the free energy per site.

We also expect this limit to be independent of the way it is taken. For
example, it should not matter whether the length, breadth and height of
the crystal go to Infinity together, or one after the other: so long as they
do all ultimately become infinite.

From (1.4.6), the internal energy per site is

d
u(H,T)= —Tz-a-f,[f(H, TYT]. (1.7.7)
The specific heat per site is defined to be

C(H , T) = =u(H , T). (1.7.8)
It has been usual to define two critical exponents a and o’ by asserting

that near T, the zero-field specific heat diverges as a power-law, i.e.
co,n~t* ast— 0", (1.7.9)

~ (=07 ast— 0",

where r is defined by (1.1.3).

The difficulty with this definition is that C(0, T) may remain finite as ¢
goes to zero through positive (or negative) vaiues, even though it is not
an analytic function at ¢ = (. For instance C(0, T) may have a simple jump
discontinuity at ¢ = 0, as in the mean-field model of Chapter 3.

To obtain an exponent which characterizes such behaviour it is better
to proceed as foliows.
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Let f.(0,T) and f_(0, T) be the zero-field free energy functions for
T> T.and T < T, respectively. Analytically continue these functions into
the complex T plane and define the ‘singular part’ of the free energy to be

KO, Ty=£.0,T)-f{0.T). (1.7.10a)

Near T = T, this usually vanishes as a power law, and « can be defined
by

0,7y~ ast— 0. (1.7.10b)

This definition is equivalent to (1.7.9) (with & = a) for those cases
where u(0, T) is continuous and C{0, T) diverges both above and below
T..
It used to be thought that the only possible singularity in f(0, T) was a
jump-discontinuity in some derivative of f. If the first » — 1 derivatives
were continuous, but the rth derivative discontinuous, then it was said that
the system had a ‘transition of order »'. In particular, a discontinuity in
(i.e. latent heat) is called a first-order transition.

While it 1s now known that this classification is not exhaustive, such
behaviour is included in (1.7.10): a transition of order » corresponds to
2 = o= r. In particular, & = 1 for a first-order transition.

From (1.7.8), the definition (1.7.10) implies that #(0 , T') contains a term
proportional to ¢ ~*. Since u(0, T) is usuaily bounded, it follows that

<1, (1.7.11)

The exponent & may be negative.

Magnetization

The magnetization is the average of the magnetic moment per site, i.e.,
using (1.4.4),

MH, DY=NXoy+...+ on, (1.7.12)
= NIZJP 2 (o +... +oy)

x exp{— [E[,(a) -HZ m]fk}"} | (1.7.13)

Differentiating (1.7.5) with respect to H, and using (1.7.6), one obtains
that in the thermodynamic limit (N— «)

M(H, T) = —%f(H, 7). (1.7.14)
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Since the summand in (1.7.5) is unchanged by negating H and o, Zy and
f are even functions of H, so M is an odd function, i.e.

M(~H,T)=-M(H,T). (1.7.15)
From (1.7.12) it lies in the interval
-1=MH,T)=1. (1.7.16)

Differentiating (1.7.13) with respect to H and using (1.1.1) and (1.4.4),
the susceptibility is

_ oM
X~ 3H
= (NET) ™ {4} - ()%}, (1.7.17)
where
M=2 0. (1.7.18)

Using only the fact that the average of a constant is the same constant,
(1.7.17) can be written

x = (NET) " ([ M = (AT . (1.7.19)
Thus y is the average of a non-negative quantity, so
oM
X=H{“?- 0. (1.7.20)

The magnetization M is therefore an odd monotonic increasing function
of H, lying in the interval (1.7.16), as indicated in Fig. 1.1.

Note that for finite N, Z is a sum of analytic positive functions of H, so
Fand M are also analytic. The discontinuity in Fig. 1.1(a), and the singularity
in Fig. 1.1(b), can only occur when the thermodynamic limit is taken.

The critical exponents 8, 8, v, ¥ associated with the magnetization have
been defined in Section 1.1. The scaling relations (1.2.13) can be obtained
by integrating (1.7.14), using the scaling hypothesis (1.2.1).

Correlations

The correlation between spins ¢ and j is
g = {00 — {3 (0p . (1.7.21)

If Ey(0) is translation invariant, as is usually the case, {o;} is the same for
all sites i, so from (1.7.12),

(g ={op=M(H,T). (1.7.22)
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Also, g; will depend only on the vector distance ry between sites { and j,
i.e.

& = g(ry) , (1.7.23)

where g(r) is the correlation function.

Away from T, the function g(r) is expected to decay exponentiaily to
zero as r becomes large. More precisely, if k is some fixed unit vector, we
expect that

glxk) ~x~Te ¥ asx— (1.7.24)

where 7 is some number and £ is the correlaiion length in the direction k.

The correlation length is a function of H and 7, and is expected to
become infinite at 7. In fact, this property of an infinite correlation length
can be regarded as the hallmark of a critical point. In particular, it is
expected that

5§0,T)~¢" ast—0" (1.7.25)
~ (=) ast— 07,
where v and ' are the correlation length critical exponents.

It is a little unfortunate that § also depends on the direction k. However,
near 7 this dependence is expected to disappear and the large-distance
correlations to become isotropic (see for example McCoy and Wu, 1973,
p- 306). Thus the exponents v and # should not depend on the direction
in which & is defined.

At the critical point itself, the correlation function g(r) still exists, but
instead of decaying exponentially decays as the power law

g(r) ~ rdv2-n, (1.7.26)

where 7 is a critical exponent.
In scaling theory, these properties are simple corollaries of the correlation
scaling hypothesis, which is that near T,, for r ~ ,

g(r) ~r N D(HE (| HITVY (1.7.27)

The susceptibility y can be expressed in terms of g(x), To do this, simply
sum (1.7.21) over all sites ¢ and j. From (1.7.17) it immediately follows
that

%= (VKT 2 2. (1.7.28)

For a transiation-invariant system,
8= Ej‘, g(r;) = independent of i , (1.7.29)
i
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so (1.7.28) becomes
x= 7)Y 2 glry), (1.7.30)
!

where 0 is some fixed site 1n the lattice.
Near 7. the function g(r) is an isotropic bounded slowly varying function
of r, so the summation can be replaced by an integration, giving

x~r glryr~tdr. (1.7.31)
0

Making the substitution r = x§ and using (1.7.27), it follows that near T,
x~ &7, (1.7.32)

The scaling relations (1.2.14) now follow from the definitions of y, ',
v, ¥ and the equality of y and ¢/.

Interfacial Tension

This quantity is defined only on the cut in Fig. 1.2, i.e. for #=0 and
T < T,. If the cut is approached from above, i.e. H goes to zero through
positive values, the equilibrium state is one in which most spins are up. If
the cut is approached from below, most spins are down.

At H = 0 these two equilibrium states can coexist: the crystal may consist
of two large domains, one in one state, the other in the other. The total
free energy is then

F=Nf+Ls, (1.7.33)

where Nf is the normal bulk free energy and Ls is the total surface free
energy due to the interface between the domains, If L is the area of this
interface, then s is the interfacial tension per unit area.

It will be shown in Section 1.9 that there is a correspondence between
the magnetic model used here and a model of a liquid — gas transition. In
the latter teminology, s is the surface tension of a liguid in equilibrium
with its vapour, e.g. water and steam at 100°C,

The interfacial tension is not usually emphasized in the theory of critical
phenomena, but it is one of the thermodynamic quantities that can be
calculated for the exactly soluble two-dimensional models, so is of interest
here. It is a function of the temperature 7.

As T approaches T, from below, the two equilibrium states become the
same, s0 § goes to zero. It is expected that near T,

s(T) ~ (—#)*, (1.7.34)
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where p is yet another critical exponent, the last to be defined in this book.
Widom (1965) used scaling arguments to suggest that near T,

S(T) o« 50, T) MX0, T)x(0, T), (1.7.35)

from which the scaling relation (1.2.15) follows. He also obtained the
hyper-scaling relation (1.2.16).

1.8 Nearest-Neighbour Ising Model

The discussion of Section 1.7 applies for any even Hamiltonian Ey(0),
subject only to some implicit assumptions such as the existence of the
thermodynamic limit (1.7.6) and a ferromagnetic critical point.

The simplest such Hamiltonian is one in which only nearest neighbours
interact, i.e.

Efa) = —J%o,-q— (1.8.1)

where the sum is over all nearest-neighbour pairs of sites in the lattice.
This is the normal Ising model mentioned in Section 1.6. If J is positive
the lowest energy state occurs when all spins point the same way, so the
model is a ferromagnet.

A great deal is known about this model, even for those cases where 1t
has not been exactly solved, such as in three dimensions, or in two dimen-
sions in the presence of a field. For instance, one can develop expansions
valid at high or low temperatures.

From (1.7.5), the partition function is

Zy = zexp[K{z)a‘-q;+ hZo,-], (1.8.2)
g i) i
where
K =JkT, h=HIKT, (1.8.3)

so Zy can be thought of as a function of & and K. From (1.7.6) and (1.7.14)
the magnetization per site is

M=-§- lim N~ !'ln Zpyh , K). {1.8.4)
3}1 N—m
It is easy to produce a plausible, though not rigorous, argument that M
should have the behaviour shown in Fig. 1.1, and that there should be a
critical point at H = 0 for some positive value T of T. This will now be
done.
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For definiteness, consider a square lattice (but the argument applies to
any multi-dimensional lattice). The RHS of (1.8.2) can be expanded in
powers of X, giving

Zy=(2cosh AYV {1 + 2NKZ
+ NKI(2N - T + 62 + 1] + 6K}, {1.8.5)
where
t=tanhh. (1.8.6)
Substituting this expansion into (1.8.4) gives
M=tanhh{l +4sech’h[K + (3 -7 K*+ 6(K})]}. (1.8.7)
All terms in this expansion are odd analytic bounded functions of A.
Assuming that the expansion converges for sufficiently small K, i.e. for
sufficiently high temperatures, it follows that for such temperatures

M(H , T) has the graph shown in Fig. 1.1(c¢). In particular, it is continuous
at H =0 and

My(T) = M(0, T) =0, T sufficiently large . (1.8.8)

Alternatively, at low temperatures K is large and the RHS of (1.8.2)
can be expanded in powers of

u = exp(—4K). (1.8.9)

The leading term in this expansion is the contribution to Z from the state
with all spins up (or all down). The next term comes from the N states
with one spin down and the rest up (or vice versa); the next from the 2N
states with two adjacent spins down (or up), the next term comes from
either states with two non-adjacent spins, or a spin and two of its neighbours,
or four spins round a square, reversed; and so on. This gives

Zy= em’“m’[l + Nyle 2
+ 2N e + IN(N - 5) ute
+6Nu'e ™ + Nute ¥ + 6(u))
+ NE-NA(] 4 N e
+ 2Nt e + IN(N — 5) ut e¥
+ 6Nu' e + Nu'e® + 6)). (1.8.10)

The first series in curly brackets is the contribution from states with
almost all spins up, the second from states with almost all spins down.
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Equation (1.8.10) can be written
Zy = MWK L N K) (1.8.11)
where
yh,K)=2K+h +ule?
+2l e ¥ +ul(-2e M+ 6e ¥ +e
+005). (1.8.12)

To any order in the w-expansion, y(# , K} is independent of N, provided
N is sufficiently large.

If 4 is positive, the first term on the RHS of (1.8.11) will be larger than
the second. In the limit of N large it will be the dominant contribution to
Zy, 80 from (1.8.4)

d

=1-2ule™? - Qle ¥
—u(—10e " +36e™% + 88
- G(u”) ith>0, (1.8.13)
and the spontaneous magnetization is
M(T) - Jim, 1

=1 - 2u?— 8 - 34 — 6(°). (1.8.14)

If these expansions converge for sufficiently small u (i.e. sufficiently
low temperatures), then M, is positive for small enough . Remembering
that M(H , T) is an odd function of H, it follows that at low temperatures
M(H ,T) has the graph shown in Fig. 1.1(a), with a discontinuity at
H=0.

The function My(T) is therefore identically zero for sufficiently large 7,
but strictly positive for sufficiently small 7. At some intermediate tem-
perature T, it must change from zero to non-zero, as indicated in Fig. 1.3,
and at this point must be a non-analytic function of 7. Thus there must be
a ‘critical point’ at H =0, T = T, where the thermodynamic functions
become non-analytic, as indicated in Fig. 1.2,

This argument does not preclude further singularities in the interior of
the (4, T) half-plane, but Figs. 1.1 to 1.3 are the simplest picture that is
consistent with it.

Parts of the argument, or variants of them, can be made quite rigorous.
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For instance, as long ago as 1936 Peierls proved that My(T) is positive for
sufficiently low temperatures (see also Griffiths, 1972, p. 59).

The argument fails for the one-dimensional Ising model. This is because
the next-to-leading term in the low temperature u expansion comes from
states such as that shown in Fig. 1.6, where 3 line of adjacent spins are all

* * 9 » Q0O 0 D W @

Fig. 1.6. An arrangement of spins in a one-dimensional Ising model that contributes
to next-to-leading order in a low-temperature expansion. Full circles denote up
spins, open circles down spins.

reversed, rather than just a single spin. There are iN{N — 1) such states,
instead of N, so even to this order Zy 1s not of the form {1.8.11). This of
course Is consistent with the fact that the one-dimensional model does not
have a phase transition at non-zero temperatures.

1.9 The Lattice (Gas

As well as being a model of a magnet, the Ising model is also a model of
a fluid.

To see this rather startling fact, consider a fluid composed of molecules
interacting via some pair potential ¢{r). Typically this potential will have
a hard-core (or at least very strong short-range repulsion), an attractive
well and a fairly rapidly decaying tail. The usual example is the Lennard
— Jones potential

@(r) = 4e((ror)" — (ro'r)) (1.9.1)

shown in Fig. 1.7(a).

Instead of allowing the molecules to occupy any position in space, restrict
them so that their centres lic only on the sites of some grid, or lattice, If
the grid is fairly fine this is a perfectly reasonable step: indeed it is a
necessary one in almost any numerical calculation.

Since @(r)is infinitely repulsive at r = {}, no two molecules can be centred
on the same site, With ¢ach site 7 associate a vaniable s, which is zero if the
site is empty, one if it is occupied. If there are N sites, then any spatial
arrangement of the molecules can be specified by s ={s,,... ,sx}. The
number of molecules in such an arrangement is

n=s5+...+sn, (1.9.2)
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Fig. 1.7. Interaction potentials for a model fluid: (a)} Lennard-Jones, (b}
square-well.
and the total potential energy is
E= E tpquSj . (1.9.3)

(.f)

where the sum is over all pairs of sites on the lattice (not necessarily nearest
neighbours) and ¢, = ¢(r;) is the interaction energy between molecules
centred on sites { and f.

The grand-canonical partition function is then

Z= 2 exp[(np— EYKT], (1.9.4)

where p is the effective chemical potential (for classical systems the con-
tribution of the integrations in momentum space can be incorporated into

).
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In appropriate units, the pressure is
P=N1%ThZ, (1.9.5)
the density is the average number of molecules per site, i.e.

p=(WIN
_9P

o (1.9.6)

and the compressibility is

= ?— . (1.9.7)

the differentiations being performed at constant temperature.

The Lennard — Jones potential (1.9.1) is a fairly realistic one, but the
qualitative features of the liquid — gas transition are not expected to depend
on the details of the potentiai: it should be sufficient that it have short-
range repulsion and an attractive well. Thus ¢, should be large and positive
when sites [ and j are close together: negative when they are a moderate
distance apart; and zero when they are far apart. The simplest such choice
is

{ﬁ,;; =400 jfi= ] s
= —g¢ if i and j are nearest neighbours ,
=0 otherwise . (1.9.8)

This ¢orresponds to the *square well’ potential shown in Fig. 1.7(b}), which
is often used in model calculations.

Letting ¢; = + is equivalent to taking the potential to be infinitely
repulsive if two molecules come together, i.e. to prohibiting two molecules
from occupying the same site. This feature has already been built into the
formulation, so if ¢ is given by (1.9.8), then from {1.9.3) the energy is

=g 2 5, (1.9.9)
{45

the sum now being only over nearest-neighbour pairs of sites on the lattice.

It is now trivial to show that (1.9.4) is the partition function of a
neatest-neighbour Ising modei in a field. Replace each s5; by a ‘spin’ o,
where

0 =28~ 1. (1.9.10)
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Thus o;= —1 if the site is empty, +1 if it is full. If each site has g
neighbours, there are $Ng nearest-neighbour pairs, and eliminating », E,
51, . .. , Sy between equations (1.9.2), (1.9.4), (1.9.9) and (1.9.10) gives

Z=2 exp{[s% o0+ (2p + £g) 2 G;
+ N@eg + zp)]mrc'r}. (1.9.11)
Comparing this with (1.8.2) and (1.8.3), it is obvious that, apart from
a trivial factor, Z is the partition function of an Ising model with
J=¢4, H=(2u+ eq)id. (1.9.12)

Using also (1.9.5(1.9.7), (1.7.6), (1.7.14) and (1.7.18), one can establish
the following expressions for the lattice gas variables in terms of those of
the Ising model:

e=4J, (1.9.13)
p=2H~ 24, (1.9.14)
P=—igJ+H-], (1.9.15)
p=¥1+M), (1.9.16)
kr=1x. (1.9.17)

The known general behaviour of the Ising model can now be used to
obtain the form of the equation of state of the lattice gas. To do this,
consider a fixed value of T. Then (1.9.15) and (1.9.16) define P and p as
functions of H. Using also (1.7.14) and (1.7.20), it is easily seen that

P 3p
— ‘::. — ;5..__. .
—aH-—1+M g, -——aH—ix 0, (1.9.18)

50 both P and p are monotonic increasing functions of H. When H is large
(positive or negative) the dominant term in the Ising model partition
function is one in which all spins are alike, so

f— —igJ—|H| asH—> o, (1.9.19)

From (1.7.14), (1.9.15) and (1.9.16) it follows that
P—0 andp—0 as H— ~w | (1.9.20)
P~2Handp—1 asH— +oo, (1.9.21)

Since P and p are monotonic increasing functions of H, from (1.9.20) they
must be positive.
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For T>T,, f and M, and hence P and p, are continuous functions of
H. Thus P is a monotonic increasing function of p, and a monotonic
decreasing function of the volume per molecule

v=pl. (1.9.22)

As v increases from 1 to «, P decreases from infinity to zero.
For T < T, M is a discontinuous function of H as shown in Fig. 1.1(a).
Thus p and » have a discontinuity (but P does not).

P&

: : ' . : >

1] 2 3 4 5 4 v
Fig. 1.8. Typical (P, v) isotherms for a simple fluid whose intermolecular inter-
actions have a hard core. The upper two isotherms are for temperatures greater
than T, the middle one is the critical isotherm (T = T.}, and the lower two are for
temperatures less than 7.

i
$
1

Noting also that the expansion coefficient

ol
atj e
of a fluid is usually positive (an exception is water between 0°C and 4°C}),
it follows that the (P, v) isotherms of the lattice gas (in any dimension
greater than one) have the general structure indicated in Fig. 1.8. These
are typical isotherms of a fluid in which the intermolecular potential has
a hard core.

The point € in this figure is the critical point, and corresponds to the
critical point H=0, T = 7, in Fig. 1.2.

Since M = 0 at this point, we see from (1.9.14) and (1.9.16) that the
critical values of i, p and v for the lattice gas are

w=-2qf, p.=%, v.=2. {(1.9.23)
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At T=T,, from (1.1.5) and (1.9.16) we expect that
v.— v~ HY® as H—0. (1.9.24)

Since P — P, is proportional to H for smalil H, it follows that near C the
equation of the critical isotherm is

P—P,~(v,—v)’. (1.9.25)

For T <. T, an isotherm breaks up into three parts: that part to the left
of the broken curve in Fig. 1.8, corresponding to fairly high densities and
to a liquid state; the low-density part to the right, corresponding to a gas;
and the horizontal line in between, corresponding to the two-phase region
where the liquid can co-exist with its vapour. The broken curve is known
as the co-existence curve. It corresponds to the cut in Fig. 1.2, where
H=0and M = 2My(T). From (1.9.16) and (1.9.23), we see that on this
curve

o= o = MA(T). (1.9.26)

From (1.1.3), (1.1.4) and (1.9.22), it follows that near T, the equation
of the co-existence curve in the (v, T) plane is

v — o] ~ (T, ~ TH¥. (1.9.27)

Near the critical point P — P, is proportional to ¢, so from (1.9.27) the
equation of the co-existence curve in the (v, P) plane is

P.-P~|v~uv]" (1.9.28)

Equations (1.9.25) and (1.9.28) relate the exponents d and f to the
liquid — gas critical point. To do the same for o, y and y, first note that
M =0 on the line segment H=0, T> T, in Fig. 1.2. From (1.9.16) this
line segment therefore corresponds to the critical isochore v = ¢,. From
(1.7.7)~(1.7.9) and (1.9.15), and (1.1.6) and {1.9.17), it follows that

EPIGT? ~1t7%, kr~t" (1.9.29a)

as C is approached from above along the critical isochore & = v,.
The line segment H =0, T<T. in Fig. 1.2 corresponds to the co-
existence curve in Fig. 1.8, so

PPIAT? ~ (1), kr~ (=) (1.9.29b)

as C is approached along the co-existence curve, the differentiation being
performed on this curve.

These definitions (1.9.29) of & and o' are the analogue of (1.7.9), and
suffer from the same difficulties. If 8P/3T is not continuous, or if 32P/aT?
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does not diverge at C, it is better to use the analogue of (1.7.10) and define
a single exponent « as follows.

Let P, (T) be the pressure when v = v.and T > T, P_(T) be the pressure
when ¢ lies on the co-existence curve and 7 < T.. Analytically continue
these functions into the complex T-plane and define P{7) and a by

PAT) =P(T) - P(T) ~1*. (1.9.30)

To summarize this section: the Ising model of a magnet is also a model
of a lattice gas; it merely depends whether one uses ‘magnetic language’
(spins up or down) or ‘particle language’ (sites occupied or empty). In the
second language the critical exponents 8, 8, v, ¥, o are defined by (1.9.25),
and (1.9.28)-(1.9.30).

The magnetic language is more convenient in theoretical calculations:
it clearly exhibits the symmetries of the Hamiltonian and the thermodyn-
ami¢ functions, notably the relation M{—H) = —M(H).

1.10 The van der Waals Fluid and Classical Exponents

There are phenomenological equations of state, notably that proposed for
continuum fluids by van der Waals (1873):

P=kTi(v - b) - alv? (1.10.1)

where @ and b are constants. This equation is valid only outside the co-
existence curve, which curve is defined by the Maxwell equal area con-
struction (Pathria, 1972, p. 376) which ensures that P and y are continuous
along any isotherm. As we remarked in Section 1.6, it is the exact equation
of state of a model solved by Kac et al. (1963/4).

The critical exponent definitions (1.9.25), (1.9.28-30) apply to any liquid
- gas critical point, not just that of the simple lattice gas of Section 1.9.
Equations such as van der Waals predict that near T, the critical isotherm
is a cubic curve, and the coexistence curve a parabola, From (1.9.25) and
(1.9.28) this implies

6=3, p=1%. (1.10.2)
Also, the van der Waals equation (1.10.1) has a critical point at
T.=8a/2Tbk, ©,=3b. (1.10.3)

Near this point it is readily verified that k7 ~ 1 so0
y=y=1. (1.10.4)
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On the critical isochore it is easily seen from (1.10.1) that
P— P.=4at1275°, (1.10.5)
while on the coexistence curve a more complicated calculation gives
P — P.= (4a/27h%) [t + 6675 + 6(1)] (1.10.6)

Thus §*P/aT? is finite at C but has a jump discontinuity on going from the
critical isochore to the co-existence curve. The definitions (1.9.29) of o
and o/ fail, but (1.9.30) gives

w=0. (1.10.7)

The values (1.10.2), (1.10.4), (1.10.7) of the critical exponents are
known as the classical values. They satisfy the scaling relations (1.2.12)
and (1.2.13), and are the values given by the simple ‘infinite dimensional’
mean field and Bethe lattice models (Chapters 3 and 4). They are not
correct for the nearest-neighbour Ising model in two or three dimensions,
but it is now generally believed (Fisher, 1974, p.607) that they are correct
in four or more dimensions.
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THE ONE-DIMENSIONAL ISING MODEL

2.1 Free Energy and Magnetization

Ising proposed his model in 1925 and solved it for a one-dimensional
system. The solution is presented in this chapter, partly because it provides
an introduction to the transfer matrix technique that will be used in later
chapters, as well as for the intrinsic interest of a simple exactly soluble
model, The one-dimensional model does not have a phase transition at
any non-zerc temperature, but it will be shown that it has a critical point
at H = T =0, that critical exponents can be sensibly defined, and that the
scaling hypothesis and relevant scaling relations are satisfied.

— g * . - & *—
1 2 3 N

Fig. 2.1. The one-dimensional lattice of N sites.

Consider an Ising model on a line of N sites, labelled successively
j=1,..., N, as shown in Fig. 2.1. Then the energy of the model is given
by (1.7.2), (1.7.3) and (1.8.1), i.e.

N N
E(o) = —J_Eiap,-”-ﬂ_zlaf. (2.1.1)
1= =

Here site N is regarded as being followed by site 1, so that gy, in (2.1.1)
is to be interpreted as ¢;. This is equivalent to joining the two ends of the
line 50 as to form a circle, or to imposing periodic boundary conditions on
the system. This is often a useful device, partly because it ensures that all
sites are equivalent and that the system is translationally invariant, In

32
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particular,
(o) = (o0 =...={(on, (2.1.2)
so from (1.7.12) the magnetization per site is
M(H,T)={o), (2.1.3)

where 1 is any particular site of the lattice. This result is true for any
translationally invariant system.
From (1.8.2), the partition function is

N N
Zy= Eexp{KEqu-ﬂ + h_zlq,} (2.1.4)
T I= -

where
K=JXkT, h=HHKT. (2.1.5)

Now we make a vital observation: the exponential in {2.1.4) can be
factored into terms ¢ach involving only two neighbouring spins, giving

Zy= ; Vioy, ) V(or, 03) V(os, au). ..

. V(G'N_1 . GN) V((TN. O'l) ' (216)

where
V(o, o) = explKoa' + th{a+ ¢')]. (2.1.7)

This is not the only possible choice of V: it could be multiplied by
exp [a(o — )] (for any a) without affecting (2.1.6). However, this choice
(in which each ko is shared equally between two V's) ensures that

V(o,d)=V(d ,0), (2.1.8)

which we shall see is a useful symmetry property.
Now look at the RHS of (2.1.6): regard the V{o, ¢') as elements of a
two-by-two matrix
K

D ) e

e e
Then the summations over &, &, . .., Oy in {2.1.6) can be regarded as

successive matrix multiplications, and the summation over o as the taking
of a trace, so that

Zy = Trace V¥, (2.1.10)

At each stage in the procedure, matrix multiplication by V corresponds
to summing over the configurations of one more site of the lattice. The
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matrix V is known as the fransfer matrix. In later chapters we shall see that
transfer matrices can be defined for two- and higher dimensional models.
Equation (2.1.10) is then still satisfied, but unfortunately V becomes an
extremely large matrix.

Let %3, x; be the two eigenvectors of V, and 1, A, the corresponding
eigenvalues. Then

VX, = Ax,,f=1,2. (2.1.11)
Let P be the two-by-two matrix with column vectors x;, x;, 1.e.
P= (Xl ,Xz) . (2112)
Then from (2.1.11)
A 0
VYVP=P ( ) . (2.1.13)
0 A

Since V is a symmetric matrix, it must be possible to choose x; and x;
orthogonal and linearly independent. Doing so, it follows that the matrix
P is non-singular, i.e. it has an inverse P~'. Multiplying (2.1.13) on the
right by P gives

V=P (]“ )P‘l . (2.1.14)

Substituting this expression for V into (2.1.10), the matrix P cancels out,
leaving

Jl.l Oy\w
ZN=Trace( ) =AY, (2.1.15)
0 A

Let 1, be the larger of the two eigenvalues and write (2.1.15) as
NllnZy=lnk+ N1l + (A" (2.1.16)
Since |A;/A;| < 1, the second term on the RHS tends to zero as N— oo,

Thus from (1.7.6) the free energy per site does tend to a limit as
N— o, namely

f(H,T)=—&T lim N"'InZy
N—=

=~ kTIn !‘.[
= — kTIn[e¥cosh i + (e¥¥sinh*h + "2}, (2.1.17)
Differentiating this result with respect to h, using (1.7.14) and (2.1.5),
gives
eX sinh h
[eXsinh? h + X

MH,T) = (2.1.18)
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The free enmergy is an analytic function of H and T for all real H and
positive 7. The magnetization M(H , T) is an analytic function of H, with
a graph of the type shown in Fig. 1.1(c). Thus the system does not have
a phase transition for any positive temperature.

2.2 Correlations

From (1.4.3), (2.1.1), (2.1.7), the probability of the system being in the
state ¢={oy, ..., On} 15
ZitVig, o) V(em, m) V(es, o). .. V(ow, 01} - (2.2.1)

Thus the average value of (say) oo is

(o105) = Z\' 2 o V(oy, 0) V(oe, 03) 03

V(0'3 ' 0'4) S V(UN, I‘J].) . (2.2.2)
This can also be written in terms of matrices: let S be the diagonal matrix
S= (1 0 ) (2.2.3)
0 -1/’ -
i.e. § has elements
S(o,0')y=0d(c,0). (2.2.4)
Then the RHS of {2.2.2) can be written as
Zy' Trace SVVSV ... V, (2.2.5)
S0
{oyon) = Zy' Trace SVIgyV-2, (2.2.6)

Similarly, if 0 <j - i< N,
(o) = Zx" Trace SV~ SyV*1-/, (2.2.7)
{a) = Zy) Trace SVV. (2.2.8)

Note that the translation invariance of the system is explicitly shown in
these equations: () is independent of i and (0;0) depends on i and j only
via their difference j — i.
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Define a number ¢ by the equation
cot 2¢ = eXsinh & , 0<¢<g. (2.2.9)

Then a direct calculation of the eigenvectors of V, using (2.1.9), (2.1.11)
and (2.1.12), reveals that the matrix P can be chosen to be orthogonal,
being given by

cos — sin
P= ( os ¢ ‘b) | (2.2.10)
sin ¢ cos ¢
The expressions (2.2.7), (2.2.8) are unchanged by applying the similarity
transformation (2.1.14) to both V and 8, i.e. replacing V, S by

» A, 0
pove= (M 0),

0 4 (2.2.11)
p-isp = ( cos2¢p —sin 2¢)

~sin2¢ —cos2¢/

respectively.
Substituting these expressions into (2.2.7) and (2.2.8), and taking the
limit N— = (keeping j — i fixed), we obtain

-
(00 = cost 24 + sin? 200 (2) (2.2.12)
( ‘p j'l

{g) =cosl¢. (2.2.13)

Together with (2.1.3), this second equation gives us an alternative
derivation of the magnetization M(H , T). The result is of course the same
as (2.1.18) above.

From (1.7.21), (2.2.12) and (2.2.13), the correlation function g; can now
be evaluated. It is

Bi = {C’:C'j) — {0} (Uj}
= sin? 2¢ (.&2.".&1}""' (2.2.14)

for j= i,

Since |A/A1] < 1, we see immediately that g; does tend exponentially to
zero as j — i becomes large, and from (1.7.24) the correlation length Z is
given (in units of the lattice spacing) by

&= [In(AvA2) L (2.2.15)
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2.3 Critical Behaviour near T =0

It is true that |Ay/A;| < 1 for all positive temperatures T and all real fields
H. However, if H = (, then

']11.1{)1" (12”-1) =1.

The correlation length & therefore becomes infinite at H=T=0. We
remarked in Section 1.7 that a critical point can be defined as a point at
which &= o, so in this sense H= T =0 is a critical point of the one-
dimensional Ising model.

This is interesting because it enables us to make some tests of the scaling
hypotheses discussed in Sections 1.2 and 1.7. We shall find that the tests
are satisfied.

The scaling hypothesis (1.2.1) is formulated in terms of M, H and
t =(T - T,)T,. However, if T, = 0 it is more sensible to replace these by
the variables M, i = H/kT, and

t=exp(—2K) = exp(=25/kT). (2.3.1)

Then h and ¢ measure the deviation of the field and temperature, respec-
tively, from their critical values.

The scaling hypothesis (1.2.1) is equivalent to stating that the relation
between M, /4 and ¢ is unchanged by replacing them by

FLIY L T

for any positive number A. Thus another way of writing (1.2.1) is (for A,
¢ small)

M = h|h]%" = (e h |78y, (2.3.2)
where ¢{x) is another scaling function, related to h{x).

For the one-dimensional Ising model, we see from (2.1.18) and (2.3.1)
that if k] <€ 1, then

M = hi(¢ + W), (2.3.3)
Clearly M is a function only of #h, so the scaling hypothesis (2.3.2) is
indeed satisfied, with
po=1,6==, (2.3.4)
and
Plx)=(xt+ 1D, (2.3.5)
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The exponent relations (1.2.12) and (1.2.13) are consequences of the
scaling hypothesis, so must be satisfied, From these and (2.3.4) it follows
that

a=1,=0,y=1. (2.3.6)
Also, if & = 0 we see from (2.1:9) that the eigenvalues of V are
Ay =2coshK,6 ;= 2sinh K, {2.3.7)
so from (2.3.1)
MiA= 1+ /1~ (2.3.8)
When ¢ <€ 1, equation (2.2.15) therefore becomes
g~ (@™, (23.9)
which is of the scaling form (1.7.25), with
v=1. (2.3.10)

At the critical point 4, = A, 50 from (2.2.14) the correlation function gy
is a constant. This is of the scaling form (1.7.26), with

n=1. (2.3.11)

We can now use these values of the exponents to test the scaling relation
(1.2.16) and the second of the relations (1.2.14). They are indeed satisfied.

The other relations ¥ =3, g+ v= 2 — a cannot be tested, since they
involve functions defined in the ordered state 0 < T < T, and & = 0. This
state does not exist for this model.

The definition (2.3.1) of ¢ is somewhat arbitrary: the RHS could be
replaced by any positive power of exp(—2K). The effect of this would be
to multiply each of 2 — &, y and v by the same factor. In view of this, we
can only say of the critical exponents of the one-dimensional Ising model
that they satisfy

2-a=y=v, (2.3.12)
ﬁ=036=m>ﬂ=1-

Despite the fact that 7, = 0, these exponents are still of interest: they
can be compared with the Ising model exponents for 2, 3 and higher
dimensions.



3
THE MEAN FIELD MODEL

3.1 Thermodynamic Properties

In any statistical mechanical system each component interacts with the
external field and with the neighbouring components. In the mean-field
model the second effect is replaced by an average over all components.

Consider a nearest-neighbour Ising model of N sping, with Hamiltonian
given by (1.7.2), (1.7.3) and (1.8.1). If each spin &; has g neighbours, then
the total field acting on it is

H+J2 g, (3.1.1)

where the sum is over the 7 neighbouring sites j. In the mean-field model
this is replaced by

H+(N- 1)-qu§0,-, (3.1.2)

the sum now being over all N — 1 sites j other than i. This is equivalent
to replacing the Hamiltonian by

N
qf
E(0) N—l%“‘q HZ g, (3.1.3)
where the first sum is over all the $N(N —~ 1} distinct pairs (i, j).

This ‘mean-field’ Hamiltonian (3.1.3) is the one that will be considered
in this chapter. As was remarked in Section 1.6, it is in a sense ‘infinite-
dimensional’, since each spin interacts equally with every other. It also has
the unphysical property that the interaction strength depends on the number
of particles. Nevertheless, it does give moderately sensible thermodynamic
properties.

39
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For a given configuration of spins, the total magnetization is

N
M= 21 a, (3.1.4)
im
and (3.1.3) can be written (using o7 =1) as
E(o) = —iqJ(4*> — NN —1) - HM, (3.1.5)
Thus in this model E(¢) depends ongy, ..., gy only via Af. This is a

great simplification: the sum over spin-values in the partition function can
be replaced by a sum over the allowed values of M, weighted by the number
of spin configurations for each value.

From (3.1.4), if » of the spins are down (value —1) and N — r are up
(value +1), then

M=N-2r. (3.1.6)

There are (‘:{) such arrangements of spins, so from (1.7.5) the partition

function is
N
Z= Eoc,, (3.1.7)
where
=" - 2_ -
= N =) expdBqJ[(N — 2r)* = NJ(N - 1)
+ SH(N — 2r}}, (3.1.8)
and
B=lUkT. (3.1.9)
Also, from (1.4.4), the average magnetization per site is
N
M=NW=0-2N)=2Z"" En(l - 2riNY ¢,. (3.1.10)
The properties of ¢, . . . , ¢y are most readily obtained by considering

d, =¢,+/c,. From (3.1.8)
vt N-—7
C r+1

d, = exp{—2BgJ(N — 2r — I}{(N = 1) ~ 28H}. (3.1.11)

We are interested in the case when N is large. As r increases from 0 to
N — 1, the RHS of (3.1.11) increases from large values {of order N) to
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small values (of order N™'). Provided fg/J is not too large, this decrease
must be monotonic. Then there must be a single integer ry such that

d,>1 forr=0,...,r0—1
d =1 (3.1.12)
d <1 forr=p+1,..., N -1.

Since ¢,+1 =dyc,, it follows that ¢, increases as r goes from 0 to r,,
decreases as r goes from ryp + 1 to N, and that ¢, 18 the largest c,.
When N and r are both large, (3.1.11) can be written

dy = cratfle, = ¢(1 — 2¢IN) (3.1.13)
where, for -1 <x <1,
1+x
Hx)y= = exp[—2fqfx — 28H]. (3.1.14)
Let xo be the solution of the equation

Pxe) =1. (3.1.15)

Then, when N is large, rp is given by
1 “‘ZJ"GJ'TN=X{}. (3116)

Regarded as a function of r, ¢, has a peak at r = #,, the width of the
peak being proportional to Nt. Although this width is large compared to
one, it is small compared to N. Thus across this peak 1 — 2¢/N in (3.1.10)
can be replaced by 1 — 2ry/N. Since values of » outside the peak give a
negligible contribution to the sums in (3.1.7) and (3.1.10), it follows that
the magnetization per site is

M=1-2r/N=2x. (3.1.17)
From (3.1.14) and (3.1.15), M is given by ¢(M) =1, i.e.
M = tanh([(g JM + H)/KT]. (3.1.18)

This equation defines M as a function of H and T. It was first obtained
by Bragg and Williams (1934). The free energy can now be obtained by
integration, using (1.7.14), or more directly by arguing that when N is large
the sum in (3.1.7} is dominated by values of 7 close to r, s0

—pf=lim N"'InZ

N>

= lim Nlinc,. (3.1.19)

Ne—aw
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Using (3.1.8), Stirling’s approximation

nt~ Qaye " n, (3.1.20)
and (3.1,17) and (3.1.18), it follows that
—fikT =} In[4/(1 — MD)) —4qJ MEKT. (3.1.21)

This gives f as a function of M and T.

3.2 Phase Transition

From {31.18)&
H = —gIM + kT artanh(M) . (3.2.1)

This equation can be used to plot H as a function of M, for -1 < M <1,
The graph can then of course be reversed to give M as a function of H.
If ¢J < kT, then the resulting graph is similar to Fig. 1.1(c), i.e. a typical
high-temperature graph, with no spontancous magnetization.

However, if ¢/ > kT, the graph looks like that in Fig. 3.1(a). This graph
is not sensible, since for sufficiently small # it allows 3 possible values of
M, whereas M is defined by (1.7.12) or (1.7.14) to be a single-valued
function of H.

The source of this contradiction is in the statements preceding equation
(3.1.12). If ¢J > kT, then the RHS of (3.1.11) is not a monotonic decreasing
function of : instead it behaves as indicated in Fig. 3.2.

If H is sufficiently small, then there are three solutions of the equation
d. = 1, as indicated in Fig. 3.2. This means that ¢, has two maxima, as

1,*.'. 1.‘.
/""",—’__— ,—*"/‘—__—
0 W 0 H

__-—-"// _.-"'//

(e} (b)

Fig. 3.1. M as a function of H for I'= (.94 T; (a) shows all solutions of {3.1.18),
(b) is the correct graph obtained by rejecting spurious solutions.
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0 N
Fig. 3.2, d, as a function of r for T = 0.94 T, 8H = 0.006 and ¥ large.

shown in Fig. 3.3. Together with the intervening minimum, these corre-
spond to the three solutions for M of equation (3.1.18). If & is positive
(negative), then the left-hand (right-hand) peak is the greater.

It is still true that the sum in (3.1.7) is dominated by values of r close
ta rg, where #3 is the value of r that maximizes (absolutely) ¢,. Thus if
(3.1.18) has three solutions and H is positive, we must choose the solution

Ly
&

—

0 N r

Flg. 3.3. ¢, as a function of r for T=0.947,, fH = 0.006 and N =100. As N

increases, the maximum becomes larger and more sharply peaked. The other two
turning values correspond to the spurious solutions of (3.1.18).
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with the smallest value of ry, i.e. the largest value of M. Conversely if H
is negative. Doing this, the multi-valued graph of Fig. 3.1(a) becomes the
single-valued graph of Fig. 3.1(b). This is similar to the typical low-tem-
perature graph of M(ff) shown in Fig. 1.1. In particular, there is a spon-
taneous magnetization M, given by

M, = tanh(@JMy/kT), My>0, (3.2.2)

provided that ¢f > kT.
Thus the mean-field model has a ferromagnetic phase transition for
temperatures below the Curie temperature

T. = qlik. (3.2.3)

3.3 Zero-Field Properties and Critical Exponents

Spontaneous Magnetization and f

Set
t=(T-T)T,; (3.3.1)
then, using (3.2.3), the equation (3.2.2) can be written as
My = (1 + t) artanh M. (3.3.2)

For T just less than T, the spontaneous magnetization M, i1s small but
non-zero, so artanh My can be approximated by M, +MY3 . Solving the
resulting equation for A, gives

Mo = (=301 + 6()}. (3.3.3)

Thus M, is effectively proportional to {(—¢)!. From (1.1.4) the critical
exponent § exists and is given by

B=1. (3.3.4)

Free Energy and o

Let H— 0 for T> T,. Then M— 0 and from (3.1.21} the free energy is
given very simply by

—fikT=1In2. (3.3.5)
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On the other hand, if T < T, then M — M. For My small it follows from
(3.1.21) that

—fIkT = In 2 + IM¥1 — gZkT)
+ M4 + O(MS) . (3.3.6)

Using (3.2.3), (3.3.1) and (3.3.3), when ¢ is small and negative the free
energy is therefore given by

—fikT=1In2+ 3%4 + 6(F). (3.3.7)

From (1.7.7), (1.7.8}, (3.3.5) and (3.3.7), we see that the free energy
and internal energy are continuous at T = T, but the specific heat has a
jurap discontinuity. The definition (1.7.9) of the exponents & and &' is
meaningless, but the alternative definition (1.7.10) gives

a=10. (3.3.8)

Susceptibility and ¥, ¥

Hold T fixed and differentiate (3.2.1) with respect to H. Using (1.7.17),
{(3.2.3) and (3.3.1), it follows that the susceptibility x is given exactly by

x = (1L — M*gl(t + M%)]. (3.3.9)
Now let H—» 0. If T > T, then M— 0, giving
¥ = (gJ)y"L. (3.3.10a)

If T< T, then M — M,. Using the approximate relation {3.3.3) we then
obtain that near T,

x=(~2q/0". (3.3.10b)

Thus at 7, the zero-field susceptibility becomes infinite, diverging as !,
From (1.1.6) and (1.1.7) the exponents y and ¥ are given by

y=y =1. (3.3.11)

3.4 Critical Equation of State

Using (3.2.3) and (3.3.1) the exact equation of state can be written as
HIkT,=-M+ (1+t)artanh M. (3.4.1)
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Near the critical point M is small. Taylor expanding the function artanh M,
{3.4.1) gives
HikT, =M@ +tM™?), (3.4.2)

neglecting terms of order 1M> or M°.
Comparing this result with (1.2.1), we see that the scaling hypothesis is
indeed satisfied for this model, with

hix) =1 +x, (3.4.3)
=4 8=3. (3.4.4)

This agrees with (3.3.4) and it is easy to verify that the scaling relations
(1.2.12) and (1.2.13) are satisfied. Indeed they should be, since they are
consequences of the scaling hypothesis.

The values (3.3.4), (3.3.8), (3.3.11}, (3.4.4) of the exponents are the
same as those of the van der Waals fluid discussed in Section 1.10, i.e.
they are the classical values.

Since each spin interacts equally with every other, correlations are not
distance dependent, nor can the model have two physically separated
coexisting phases. Thus the exponents », 7t and g are not defined for this
model.

3.5 Mean Field Lattice Gas

Regarding a *down’ spin as an empty site and an ‘up’ spin as a site containing
a particle, the above model is also one of a lattice gas. Making the
substitutions (1.9.13)—(1.9.16) in (3.2.1) and (3.1.21), we find that the
chemical potential ¢ and pressure P are given by

u=—gep+ kT In[pi(1 — p)], (3.5.1)
P=~kTIn(l — p) — dgep°. (3.5.2)

Here p is the density, i.e. the mean number of particles per site. It must
lie in the range 0 < p < 1.

Equation (3.5.2) is the equation of state of the mean-field lattice gas.
Comparing it with (1.9.31), and noting that v = p~!, we see that it is very
similar to the van der Waals equation. Both equations are of the form

P=kT ¢{p) — ap°, (3.5.3)

where @ is a constant and the function ¢{p) is independent of the tem-
perature 7. Indeed, there are solvable models which have exactly the van
der Waals equation of state (Kac ef al., 1963/4).



