Exercise #1

due date: 21th October 2019

- a) Ergodic flow map: Consider the exercise 6.4 of the Reichl's book:
 - **EXERCISE 6.4.** Consider a dynamical flow on the two-dimensional unit square, $0 \le p \le 1$ and $0 \le q \le 1$, given by the equations of motion, $(dp/dt) = \alpha$ and (dq/dt) = 1. Assume that the system has periodic boundary conditions. (a) Show that this flow is ergodic. (b) If the initial probability density at time, t = 0, is $\rho(p, q, 0)$, compute the probability density at time, t.
 - Find a conserved quantity.
 - Find the stationary distribution function.
 - Are volumes of phase space conserved?
 - Choose an observable f(p,q)
 - Is the system ergodic w.r.t. that observable?
 - By choosing an ensemble of initial states is the system mixing?
- b) Consider the Kac-ring model.
 - write a code to calculate the number of black and white balls
 - compare the output of the code with the "molecular-chaos" solution given in the lecture and discuss the results.
- c) Consider harmonic oscillators of frequency ω in two distinct cases
 - i. An ensemble of thermalized oscillators described by the density matrix $\hat{\rho} = \sum_{n} P_{n} | n > \langle n |$ where | n > are eigenstates of harmonic oscillators and $P_{n} \propto \exp(-\beta E_{n})$
 - ii. A pure state $|\psi\rangle = \sum_{n} \sqrt{P_n} |n\rangle$ with the same P_n as in i)

In both case calculate $< x^2 >$ as a function of temperature - assuming a Boltzmann distribution for P_n - and comment the results.

d) Consider N classical **independent** one-dimensional harmonic oscillators (mass m_i , frequency ω_i i = 1, N) whose initial data are taken according Boltzmann distribution for position and momenta at temperature T. Let them evolve and calculate the following correlation functions:

$$C_{i,j}(t,t') = \langle p_i(t)p_j(t') \rangle$$
, $G_{i,j}(t,t') = \langle x_i(t)x_j(t') \rangle$ where averages and done on the Boltzmann distribution of initial data.

By assuming a distribution of the oscillator's frequencies $(\omega_i > 0) P(\omega) \propto \omega^2 \quad \omega < \Lambda$ as well as equal masses for all oscillators calculate in the large *N* limit:

$$C(t,t') = (1/N)\sum_{i,j}C_{i,j}(t,t'), G(t,t') = (1/N)\sum_{i,j}G_{i,j}(t,t')$$

find the time evolution of these functions, temperature dependence and dependence on the cutoff $\,\Lambda$.

hint: express the solution for x and p as a function of initial data x(o) and p(o).

Last updated 2019-10-09 18:55:28 CEST