Exercise #3

due date: 19th November 2019

a) Consider the stochastic equation for the moment of a particle under the action of external random forces $\xi(t)$ (in one dimension):

$$\dot{p}(t) = -\gamma p(t) + \xi(t)$$

where

$$\langle \xi(t) \rangle = 0$$

$$\langle \xi(t)\xi(t')\rangle = 2M\gamma k_b T\delta(t-t')$$

Derive without approximation the average mean square displacement

$$\Delta(t) = \langle |x(t) - x(0)|^2 \rangle$$

- Derive the behaviour of $\Delta(t)$ for large and small times and define the time scale above which the behaviour of $\Delta(t)$ is **linear** in time.
- b) A polymer can be constructed as a three dimensional random walk where the position of the n+1-th monomer is given by

$$\vec{r}_{n+1} = \vec{r}_n + a\hat{u}_{n+1}$$

where a is the monomer spacing and \hat{u} is a random unit vector. The length of the polymer made by N+1 monomers can be estimated by

$$\ell = \sqrt{\langle |\vec{r}_N - \vec{r}_0|^2 \rangle}$$

where the average is taken over the random orientation of the unit vectors \hat{u}_n .

- Calculate the ratio ℓ /Na and comment the result.
- c) Prove that the entropy S is given by $S = -k_B tr \rho \log \rho$ where ρ is the equilibrium density matrix in the canonical ensemble. First perform the calculation in the classical canonical ensemble, then generalize it to the quantum case.
- d) Consider the Fokker-Planck equation in one dimension

$$\frac{\partial}{\partial t} P\left(x, t\right) = \frac{\partial}{\partial x} F\left(x\right) P\left(x, t\right) + \frac{\varepsilon}{2} \frac{\partial^2}{\partial x^2} P\left(x, t\right)$$

following the lines of the notes

show that for a potential problem

$$F\left(x\right) = -\frac{\partial}{\partial x}V\left(x\right)$$

the stationary distribution is given by

$$P(x) = \exp(-2V(x)/\varepsilon).$$

Derive the Maxwell Boltzmann distribution as stationary distribution of the momenta

and of the position. For the position distribution use the overdamped approximation in the corresponding Langevin equation.
Last updated 2019-11-05 19:53:23 CET