Exercise #1

due date: November 2nd 2020

- a) Read the notes about the Kac ring model:
 - which set of variables describes a *microscopic* state?
 - which set of variables describes the *macroscopic* state?
 - write a code to calculate the number of black and white point (you can also do it considering a small size say N=4 and doing the evolution by hand...)
 - compare the output of the code with the "molecular-chaos" solution given in the notes and discuss the results.
- b1) Consider only one one-dimensional classical harmonic oscillator
 - $\bullet\,$ write the Hamilton equation and plot a typical trajectory in the phase space
 - is the system chaotic?
- b2) now consider an ensemble made of replicas of the previous case i.e. onedimensional classical harmonic oscillator with same \$\omega\$ and mass
 - write the Liouville's evolution for and ensemble of such systems using momenta and position as variables
 - write the Liouville's evolution for and ensemble of such systems using action-angle variables (amplitude and phase)
 - consider an *isoenergetic* ensemble of oscillators (all osc. have energy=E). This ensemble starts with random phases between ϕ_0 and ϕ_0 . In such conditions evaluate ϕ_0 . Does it tends to a constant value? Is the system ergodic? Is the system mixing?
- c) Consider N classical **independent** one-dimensional harmonic oscillators (mass m_i , frequency ∞_i whose initial data are taken according Boltzmann distribution for position and momenta at temperature T. Let them evolve and calculate the following correlation functions:
- $C_{i,j}(t,t') = < p_i(t)p_j(t') >$, $G_{i,j}(t,t') = < x_i(t)x_j(t') >$ where averages and taken on the Boltzmann distribution of initial data.

By assuming a distribution of the oscillator's frequencies ($\omega_i>0$) $P(\omega_i) \rho \omega^2 \;\$ lambda as well as equal masses for all oscillators calculate in the large \$N\$ limit:

find the time evolution of these functions, temperature dependence and dependence on the cutoff Λ

hint: express the solution for x and p as a function of initial data x(0) and p(0).

- d) Consider quantum harmonic oscillators of frequency $\sigma \$ in two distinct cases
 - 1. An ensemble of thermalized oscillators described by the density matrix $\hat{\rho}=\sum_n p_n |n>< n|$ where $p_n>$ are eigenstates of harmonic oscillators and $p_n p_0 \exp(-\beta E_n)$
 - 2. A pure state $|\phi \rangle = \sum_n \sqrt{P_n} |n>\$ with the same $P_n\$ as in i)

In both case calculate <<x^2>\$ as a function of temperature - assuming a Boltzmann distribution for P_n - and comment the results.

Last updated 2020-10-17 12:03:27 CEST