
Exercise #1

due date: October 24 2022

a) Consider the following thermodynamic cycle for a perfect gas:

- Draw the cycle in the T-S plane.
- Calculate the total work exerted by the system (W).
- Calculate the total heat exchanged by the system (Q).
- Calculate the efficiency $\hat W}/{Q_{abs}}\$ where $Q_{abs}\$ is the absorbed heat.

In the following you can alternatively choose b1) or b2).

- b1) Read the notes about the Kac ring model:
 - which set of variables describes a *microscopic* state?

- which set of variables describes the *macroscopic* state?
- write a code to calculate the number of black and white point (you can also do it considering a small size say N=4 and doing the evolution by hand...)
- compare the output of the code with the "molecular-chaos" solution given in the notes and discuss the results.
- b2) Read the notes about the Logistic map:
 - write a code to calculate the map evolution and the Lyapunov exponent.
 - discuss the results in the parameters space described in the note discussing the local stability and the Lyapunov exponent.
 - When the system is chaotic the time average of \$y\$ converge to a time-independent value? Is this value independent on initial data?
- c1) Consider only one one-dimensional classical harmonic oscillator
 - $\bullet\,$ write the Hamilton equation and plot a typical trajectory in the phase space
 - is the system chaotic?
- c2) now consider an ensemble made of replicas of the previous case i.e. one-dimensional classical harmonic oscillator with same \$\omega\$ and mass
 - write the Liouville's evolution for and ensemble of such systems using momenta and position as variables
 - consider an *isoenergetic* ensemble of oscillators (all osc. have energy=E). This ensemble starts with random phases between ϕ_0 and ϕ_0 and ϕ_0 . In such conditions evaluate ϕ_0 . Does it tends to a constant value? Is the system ergodic? Is the system mixing?

Last updated 2022-10-30 15:50:42 CET