Exercise #3

due date: December 4th 2022

- a) Following the lines of the notes derive the statistical properties of the noise term x(t) as a result of the equilibrium distribution for the oscillators. Perform explicitly the x(t) imit using the Ohmic spectral density. Does the noise correlation function behaviour depends on the α implies that the spectral density? You can **optionally** answer to this question trying to guess a spectral density which goes as α implies for small α .
- b) Consider the stochastic equation for the moment of a particle under the action of external random forces \hat{x} (in one dimension):

```
\det\{p\}(t) = -\chi(t) + \chi(t)
```

where

 $\alpha \propto \sin(t) \right$

 $\alpha = 2 M \gamma k_b T \det(t-t')$

• Derive without approximation the average mean square displacement

$$\Delta(t)=\langle |x(t)-x(0)|^2 \rangle$$

- Derive the behaviour of $\Delta(t)$ for large and small times and define the time scale above which the behaviour of $\Delta(t)$ is **linear** in time.
- c) Consider the Fokker-Planck equation in one dimension

$$\frac{\pi }{\operatorname{partial}}{\operatorname{partial}} P(x,t) = \frac{\pi x} F(x)P(x,t) + \frac{2}\frac{2}{\operatorname{partial}^2}{\operatorname{partial}^2} P(x,t)$$

following the lines of the notes

show that for a potential problem

$$F(x) = -\frac{x}{\sqrt{x}}{\sqrt{x}}$$

the stationary distribution is given by

$$P(x) = \exp(-2V(x)/\exp(10x))$$
.

Consider the multidimensional Fokker-Plank equation and derive the equation for position and momenta in the case of a particle moving in one dimension under the action of a potential force. Comment the equation and compare it with the Boltzmann equation.

Derive the Maxwell Boltzmann distribution as stationary joint distribution momenta and of the position.

d) A polymer can be constructed as a three dimensional random walk where the position of the n+1-th monomer is given by

$$\left(r_{n+1}=\left(r_{n+1}+a\right)+a\right)$$

where a is the monomer spacing and \hat{u} is a random unit vector. The length of the polymer made by N+1 monomers can be estimated by

where the average is taken over the random orientation of the unit vectors \hat{u}_n .

- Calculate the ratio $\sim \$ and comment the result.

Last updated 2022-11-24 12:59:42 CET