Exercise #4

due date: December 19th 2022

- a) Consider a classical perfect gas and calculate the entropy in the canonical ensemble. Compare the result with that given, in the microcanonical ensemble, by the Sackur-Tetrode formula and show the ensemble equivalence in the thermodynamic limit.
- b) Consider the following Hamiltonian for $N\$ independent spin $\simeq \protect\$ 1\$

```
$H=-gB\sum_i \sigma_i$
```

Where \$B\$ is the external magnetic field along \$z\$, \$g\$ a coupling constant and \$\sigma_i\$ the Pauli matrix \$\sigma_z\$ at a given site \$i\$. Spin operators at different sites commute.

Perform the calculation in the microcanonical ensemble at fixed total **energy**, calculate the entropy. Plot the dimensionless entropy per spin (\$S/k_B N\$) as a function of a suitably defined dimensionless energy.

Perform the calculation of the entropy in the canonical ensemble at fixed total **temperature**.

Compare the results of the previous two points by expressing the canonical entropy as a function of the internal energy.

Comment the result.

c) In the grandcanonical ensemble calculate the dimensionless ratio $\theta \$ beta P/\rho\$ where $\rho \$ is the number density by performing a fugacity expansion in $z=\exp(\beta u)$ up to second order in z.

Perform the calculation in the case of an interacting classical gas with pair interactions.

Perform the calculation in the case of a quantum perfect gas in the case of Fermi-Dirac and Bose-Einstein statistics.

Express the result in term of the number density in both cases. Comment the two results.

d) Consider two one particle states made by one-dimensional gaussians

$$_1(x)=A\left(\left(-\frac{(x-x_0)}{2\sigma^2} \right) \right) \left(1/2 \right) \$$

$$g_2(x)=A\left(\left(-\frac{(x+x_0)}{2\sigma^2} \right) \right) \left(\frac{1}{2}\right)$$

with \$A\$ being a normalisation constant. Using these states write a possible state for 2 fermions and 2 bosons in state \$1\$ or \$2\$ neglecting the spin component. Calculate the average distance $\alpha_1 - \alpha_2 \mid 2 \right$ as a function of \$x_0\$ (you can choose $\alpha_2 = 1$). Comment the results.

Last undated 2022-	-12-04 15·18·20 CET