Exercise #0

due date: October 09 2022

- 1. An urn contains 4 numbered tokens from 1 to 4. After two extractions, consider the composite event consisting in extracting first the token 2 and then the token 4. Compute the conditional probability P(4|2) in the following cases: a) If the first token is not put back into the urn after being extracted; b) If the first token is put back in the urn after being extracted
- 2. Given N extraction of a random number \$x_i\$ define its average value. Is this value itself a random number? Can you estimate its fluctuations?
- 3. What is the binomial distribution and what are the relevant parameters describing it?
- 4. What is the difference between isothermal and adiabatic transformation.
- 5. A damped harmonic oscillator of mass \$m\$ and oscillator characteristic frequency \$\omega\$ initially departs with initial velocity \$v_0\$ from the equilibrium position. After some time we found it at rest. What is the work done by the damping force on the system?
- 6. Consider a transformation in a perfect classical gas.
 By doubling the pressure we get an halving of the volume. What is the transformation?
 Do the same kind of transformation behave the same for a quantum Fermi gas?
- 7. \$N\$ independent two level systems are thermalized at a given temperature T. What is the ratio between the average number of systems in the higher energy level and that on the lower?
- 8. What is the Maxwell-Boltzmann distribution?
- 9. What are the Bose-Einstein and Fermi-Dirac distributions.
- 10. What is the equipartition principle and when it holds?