Exercise #3

due date: November 20th 2023

a) Consider two one particle states made by one-dimensional gaussians

$$g_1(x)=A\left(\left(-\frac{(x-x_0)^2}{2\sigma^2} \right) \right) \left(\frac{1}{2} \right)$$

$$g_2(x)=A\left(\left(-\frac{(x+x_0)^2}{2\sigma^2} \right) \right) \left(\frac{1}{2} \right)$$

with \$A\$ being a normalisation constant. Using these states write a possible state for 2 fermions and 2 bosons in state \$1\$ or \$2\$ neglecting the spin component. Calculate the average distance $\alpha = 1 - 2$ as a function of x_0 (you can choose $\gamma = 1$). Comment the results.

- b) Consider the perfect Fermi and Bose gas with a general single particle dispersion $\simeq |p|^b$. Determine:
 - the density of the states (DOS)

$$N(\epsilon) = \frac{V}{h^3} \int d^3p \delta(\epsilon - \epsilon(p))$$

- the relation between \$PV\$ and \$U\$ as a function of the DOS parameters
- c) Consider a perfect gas of bosonic ultra-relativistic particles in 3 dimensions with vanishing chemical potential (black body). Calculate internal energy as a function of temperature and using the relation derived in the previous point prove that the radiation pressure is independent of volume and is proportional to \$T^4\$.
- $\mathrm{d}1)$ Prove that the equilibrium single-particle density matrix for Boltzmann particle is

$$\hat{\rho} = \frac{\exp(-\beta H^{(1)})}{Z^{(1)}}$$

for a free particle is

$$\langle x|\exp(-\beta H)|y\rangle/Z^{(1)} = A\exp(-(x-y)^2/a\lambda^2)$$

where $Z^{\{1\}}$ is the single particle partition function, $\$ is the De Broglie wavelength and $|x\rangle,|y\rangle$ position eigenstates (in 3 dimensions). Find the normalization A for a tree dimensional space and the numerical coefficient a. Comment the results. Compare the result for $\$ in $|y\rangle$ rangle to that for $\alpha p^\gamma prime \gamma s$ are three dimensional wave vectors.

d2) Optional Consider the equilibrium single-particle density matrix in the grand-canonical ensemble for massive non-relativistic non-interacting Bose particles. Write its form in momentum and position (3d) representation. Comment the limit

$\mu \circ 0^{-}\$ for the density matrix in the coordinate representation.
Using the fugacity expansion to all order or the integral expression of the density
matrix write a code to evaluate numerically it when $\mu < 0$.

Last updated 2023-11-12 19:07:26 CET